On a Halley-Steffensen method for approximating the solutions of scalar equations

Authors

  • Ion Păvăloiu Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat301-683
Abstract views: 247

Abstract

In the present paper we show that the Steffensen method for solving the scalar equation \(f\left( x\right) =0\), applied to equation
\[
h\left( x\right) =\tfrac{f\left( x\right) }{\sqrt{f^{\prime}\left( x\right) }}=0,
\]
leads to bilateral approximations for the solution. Moreover, the convergence order is at least 3, i.e. as in the case of the Halley method.

Downloads

Download data is not yet available.

References

Adi Ben-Israel, Newton's method with modified functions, Contemp. Math., 204 (1997), pp. 39-50, https://doi.org/10.1090/conm/204/02621 DOI: https://doi.org/10.1090/conm/204/02621

G. H. Brown, Jr., On Halley's variation of Newton's method, Amer. Math. Monthly, 84 (1977), 726-728, https://doi.org/10.1080/00029890.1977.11994468 DOI: https://doi.org/10.1080/00029890.1977.11994468

V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: the Halley's method, Computing 44 (1990), 169-184, https://doi.org/10.1007/bf02241866 DOI: https://doi.org/10.1007/BF02241866

G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, El. Math., 51 (1996), 28-34.

D. Luca and I. Păvăloiu, On the Heron's method for the approximation of the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 28 (1997), 103-108.

A. M. Ostrowski, The Solution of Equations and Systems of Equations, Academic Press, New York-London, 1960.

I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica (Cluj) 35 (58) (1993), 71-76.

I. Păvăloiu, Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1995), 69-82, https://doi.org/10.1007/bf02576543 DOI: https://doi.org/10.1007/BF02576543

T. Popoviciu, Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl., 13 (1968), 75-78.

Downloads

Published

January 2, 2025

How to Cite

Păvăloiu, I. (2001). On a Halley-Steffensen method for approximating the solutions of scalar equations. Rev. Anal. Numér. Théor. Approx., 30(1), 69–74. https://doi.org/10.33993/jnaat301-683

Issue

Section

Articles