On a Halley-Steffensen method for approximating the solutions of scalar equations

Authors

  • Ion Păvăloiu Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat301-683
Abstract views: 262

Abstract

In the present paper we show that the Steffensen method for solving the scalar equation f(x)=0, applied to equation
h(x)=f(x)f(x)=0,
leads to bilateral approximations for the solution. Moreover, the convergence order is at least 3, i.e. as in the case of the Halley method.

Downloads

References

Adi Ben-Israel, Newton's method with modified functions, Contemp. Math., 204 (1997), pp. 39-50, https://doi.org/10.1090/conm/204/02621 DOI: https://doi.org/10.1090/conm/204/02621

G. H. Brown, Jr., On Halley's variation of Newton's method, Amer. Math. Monthly, 84 (1977), 726-728, https://doi.org/10.1080/00029890.1977.11994468 DOI: https://doi.org/10.1080/00029890.1977.11994468

V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: the Halley's method, Computing 44 (1990), 169-184, https://doi.org/10.1007/bf02241866 DOI: https://doi.org/10.1007/BF02241866

G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, El. Math., 51 (1996), 28-34.

D. Luca and I. Păvăloiu, On the Heron's method for the approximation of the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 28 (1997), 103-108.

A. M. Ostrowski, The Solution of Equations and Systems of Equations, Academic Press, New York-London, 1960.

I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica (Cluj) 35 (58) (1993), 71-76.

I. Păvăloiu, Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1995), 69-82, https://doi.org/10.1007/bf02576543 DOI: https://doi.org/10.1007/BF02576543

T. Popoviciu, Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl., 13 (1968), 75-78.

Downloads

Published

2001-02-01

Issue

Section

Articles

How to Cite

Păvăloiu, I. (2001). On a Halley-Steffensen method for approximating the solutions of scalar equations. Rev. Anal. Numér. Théor. Approx., 30(1), 69-74. https://doi.org/10.33993/jnaat301-683