On the arclength of trigonometric interpolants

Authors

  • Jürgen Prestin Medical University of Lübec, Germany
  • Ewald Quak SINTEF Applied Mathematics, Oslo, Norway

DOI:

https://doi.org/10.33993/jnaat302-699
Abstract views: 180

Abstract

As pointed out recently by Strichartz [5], the arclength of the graph \(\Gamma(S_N(f))\) of the partial sums \(S_N(f)\) of the Fourier series of a jump function \(f\) grows with the order of \(\log N\).
In this paper we discuss the behaviour of the arclengths of the graphs of trigonometric interpolants to a jump function. Here the boundedness of the arclengths depends essentially on the fact whether the jump discontinuity is at an interpolation point or not.

In addition convergence results for the arclengths of interpolants to smoother functions are presented.

Downloads

Download data is not yet available.

References

Girgensohn, R. and Prestin, J., Lebesgue constants for an orthogonal polynomial Schauder basis, J. Comput. Anal. Appl., 2, pp. 159-175, 2000, https://doi.org/10.1023/a:1010144101402 DOI: https://doi.org/10.1023/A:1010144101402

Prestin, J. and Quak, E., Trigonometric interpolation and wavelet decompositions, Numer. Algor., 9, pp. 293-318, 1995, https://doi.org/10.1007/bf02141593 DOI: https://doi.org/10.1007/BF02141593

Prestin, J. and Selig, K., Interpolatory and orthonormal trigonometric wavelets, in: Signal and Image Representation in Combined Spaces (Eds. J. Zeevi, R. Coifman), Academic Press, pp. 201-255, 1998, https://doi.org/10.1016/s1874-608x(98)80009-5 DOI: https://doi.org/10.1016/S1874-608X(98)80009-5

Xu, Y. and Prestin, J., Convergence rate for trigonometric interpolation of non-smooth functions, J. Approx. Theory, 77, pp. 113-122, 1994, https://doi.org/10.1006/jath.1994.1037 DOI: https://doi.org/10.1006/jath.1994.1037

Strichartz, R. S. Gibbs' phenomenon and arclength, J. Fourier Anal. Appl., 6, pp. 533-536, 2000, https://doi.org/10.1007/bf02511544 DOI: https://doi.org/10.1007/BF02511544

Zygmund, A., Trigonometric Series, Cambridge University Press, Second Ed., 1959.

Downloads

Published

2001-08-01

How to Cite

Prestin, J., & Quak, E. (2001). On the arclength of trigonometric interpolants. Rev. Anal. Numér. Théor. Approx., 30(2), 219–227. https://doi.org/10.33993/jnaat302-699

Issue

Section

Articles