On the flow of a viscous thin layer on an inclined plane driven by a constant surface tension gradient


  • Emilia Borşa University of Oradea, Romania
  • Călin Ioan Gheorghiu Tiberiu Popoviciu Institute of Numerical Analysis Academy, Romania




viscous flow, thin film approximation, surface tension gradient
Abstract views: 226


Steady flow of a thin layer (trickle, rivulet) of viscous fluid down an inclined surface is considered, via a thin-film approximation. The work extends the study by Duffy and Moffatt [7] of gravity-driven thin trickle of viscous fluid to include the effects of a surface tension gradient. It acts on the free surface of the layer. At the same time the work tries an alternative analysis to our tradi- tional approaches exposed in [6] and the papers quoted there. Asymptotic and numerical results for several values of volume flux and surface tension gradients are carried out.


Download data is not yet available.


Achenson, D. J., Elementary Fluid Dynamics, Oxford University Press, Oxford, United Kingdom, pp. 238-259, 1990.

Allen, R. F. and Biggin, C. M., Longitudinal flow of a lenticular liquid filament down an inclined plane, Phys. Fluids, 17, pp. 287-291, 1974, DOI: https://doi.org/10.1063/1.1694713

Amick, C. J., Properties of steady Navier--Stokes solutions for certain unbounded channels and pipes, Nonlinear Anal., 2, pp. 689-720, 1978, https://doi.org/10.1016/0362-546x(78)90014-7 DOI: https://doi.org/10.1016/0362-546X(78)90014-7

Amick, C. J. and Fraenkel, L. E., Steady Solutions of the Navier-Stokes Equations Representing Plane Flow in Channels of Various Types, Acta Math., 144, pp. 83-152, 1980, https://doi.org/10.1007/bf02392122 DOI: https://doi.org/10.1007/BF02392122

Aris, R., Vector, Tensors and the Basic Equations of Fluid Mechanics, Englewood Cliffs, New Jersey, 1962.

Chifu, E., Gheorghiu, C. I. and Stan, I., Surface mobility of surfactant solutions XI. Numerical analysis for the Marangoni and gravity flow in a thin liquid layer of triangular section, Rev. Roumaine Chim., 29 no. 1, pp. 31-42, 1984.

Duffy, B. R. and Moffatt, H. K., Flow of a viscous trickle on a slowly varying, The Chemical Engineering Journal, 60, pp. 141-146, 1995, https://doi.org/10.1016/0923-0467(95)03030-1 DOI: https://doi.org/10.1016/0923-0467(95)03030-1

Georgescu, A., Asymptotic Analysis, Ed. Tehnica, Bucharest, 1989 (in Romanian).

Gheorghiu, C. I., An unified treatment of boundary layer and lubrication approximations in viscous fluid mechanics, Rev. Anal. Numer. Theor. Approx., to appear.

Levich, V. G., Physico-Chemical Hydrodynamics, Englewood Cliffs, New Jersey, 1967.

Ockendon, H. and Ockendon, J. R., Viscous Flow, Cambridge, University Press, 1995. DOI: https://doi.org/10.1017/CBO9781139174206

Sorensen, T. S., Hennenberg, M., Steinchen-Sanfeld, A. and Sanfeld, A., Surface chemical and hydrodynamic stability, Progr. Colloid and Polymer Sci., 61, pp. 64-70, 1976, https://doi.org/10.1007/bfb0117080 DOI: https://doi.org/10.1007/BFb0117080

Towell, G. D. and Rothfeld, L. B., Hydrodynamics of rivulet flow, AICHE. J., 12, p. 972, 1966, https://doi.org/10.1002/aic.690120524 DOI: https://doi.org/10.1002/aic.690120524

Wagner, A., Instationary Marangoni convection, Preprint, SFB 359, Univ. Heidelberg, pp. 94-42, 1994.

Wilson, S. K. and Duffy, B. R., On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow, Phys. Fluids, 10, pp. 13-22, 1998, https://doi.org/10.1063/1.869569 DOI: https://doi.org/10.1063/1.869569

Whitaker, S., Effect of surface active agents on the stability of falling liquid films, I and EC Fundamentals, 3, pp. 132-142, 1964, https://doi.org/10.1021/i160010a009 DOI: https://doi.org/10.1021/i160010a009




How to Cite

Borşa, E., & Gheorghiu, C. I. (2001). On the flow of a viscous thin layer on an inclined plane driven by a constant surface tension gradient. Rev. Anal. Numér. Théor. Approx., 30(2), 127–134. https://doi.org/10.33993/jnaat302-691