Harmonic blending approximation

Authors

  • Franz-Jürgen Delvos University of Siegen, Germany

DOI:

https://doi.org/10.33993/jnaat302-693
Abstract views: 253

Abstract

The concept of harmonic Hilbert space \(H_D({\mathbb R} ^n)\) was introduced in [2] as an extension of periodic Hilbert spaces [1], [2], [5], [6]. In [4] we introduced multivariate harmonic Hilbert spaces and studied approximation by exponential-type function in these spaces and derived error bounds in the uniform norm for special functions of exponential type which are defined by Fourier partial integrals \(S_b(f)\):

\[
S_b(f)(x)=\int _{ {\mathbb R} ^n } \chi _{[-b,b]}(t) F(t) \exp
(i(t,x)) dt,
\]
\([-b,b]=[-b_1,b_1]\times ... \times [-b_n ,b_n], \quad
b_1>0,...,b_n>0\), where
\(
F(t)\sim \left( {\textstyle\frac 1{2\pi}}\right) ^n\ \int_{{\mathbb
R} ^n}f(x) \exp (-i(x,t))dx \ \in L_2({\mathbb R} ^n) \cap
L_1({\mathbb R} ^n)
\)
is the Fourier transform of \(f \in L_2({\mathbb R} ^n) \cap
C_0({\mathbb R} ^n)\). In this paper we will investigate more general approximation operators \(S_\psi \) in harmonic Hilbert spaces of tensor product type.

Downloads

Download data is not yet available.

References

Babuska, I., Über universal optimale Quadraturformeln, Teil 1, Apl. mat., 13, pp. 304-338, 1968, Teil 2. Apl. mat., 13, pp. 388-404, 1968. DOI: https://doi.org/10.21136/AM.1968.103185

Delvos, F.-J., Approximation by optimal periodic interpolation, Apl. mat., 35, pp. 451-457, 1990. DOI: https://doi.org/10.21136/AM.1990.104427

Delvos, F.-J., Interpolation in harmonic Hilbert spaces, RAIRO Modél. Math. Anal. Numér., 31, pp. 435-458, 1997, https://doi.org/10.1051/m2an/1997310404351 DOI: https://doi.org/10.1051/m2an/1997310404351

Delvos, F.-J., Exponential-type approximation in multivariate harmonic Hilbert spaces, in: Multivariate approximation and splines; G. Nürnberger, J. W. Schmidt, and G. Waltz eds., Internat. Ser. Numer. Math., 125, pp. 73-82, Birkhäuser Verlag, Basel, 1997, https://doi.org/10.1007/978-3-0348-8871-4_6

Delvos, F.-J., Trigonometric approximation in multivariate periodic Hilbert spaces, in: Multivariate approximation: Recent trends and results; W. Haußmann, K. Jetter and M. Reimer eds., Mathematical Research, 101, pp. 35-44, Akademie-Verlag, Berlin, 1997. DOI: https://doi.org/10.1007/978-3-0348-8871-4_6

Prager, M., Universally optimal approximation of functionals, Apl. mat., 24, pp. 406-420, 1979. DOI: https://doi.org/10.21136/AM.1979.103824

Downloads

Published

2001-08-01

How to Cite

Delvos, F.-J. (2001). Harmonic blending approximation. Rev. Anal. Numér. Théor. Approx., 30(2), 151–162. https://doi.org/10.33993/jnaat302-693

Issue

Section

Articles