Harmonic blending approximation
DOI:
https://doi.org/10.33993/jnaat302-693Abstract
The concept of harmonic Hilbert space
is the Fourier transform of
Downloads
References
Babuska, I., Über universal optimale Quadraturformeln, Teil 1, Apl. mat., 13, pp. 304-338, 1968, Teil 2. Apl. mat., 13, pp. 388-404, 1968. DOI: https://doi.org/10.21136/AM.1968.103185
Delvos, F.-J., Approximation by optimal periodic interpolation, Apl. mat., 35, pp. 451-457, 1990. DOI: https://doi.org/10.21136/AM.1990.104427
Delvos, F.-J., Interpolation in harmonic Hilbert spaces, RAIRO Modél. Math. Anal. Numér., 31, pp. 435-458, 1997, https://doi.org/10.1051/m2an/1997310404351 DOI: https://doi.org/10.1051/m2an/1997310404351
Delvos, F.-J., Exponential-type approximation in multivariate harmonic Hilbert spaces, in: Multivariate approximation and splines; G. Nürnberger, J. W. Schmidt, and G. Waltz eds., Internat. Ser. Numer. Math., 125, pp. 73-82, Birkhäuser Verlag, Basel, 1997, https://doi.org/10.1007/978-3-0348-8871-4_6
Delvos, F.-J., Trigonometric approximation in multivariate periodic Hilbert spaces, in: Multivariate approximation: Recent trends and results; W. Haußmann, K. Jetter and M. Reimer eds., Mathematical Research, 101, pp. 35-44, Akademie-Verlag, Berlin, 1997. DOI: https://doi.org/10.1007/978-3-0348-8871-4_6
Prager, M., Universally optimal approximation of functionals, Apl. mat., 24, pp. 406-420, 1979. DOI: https://doi.org/10.21136/AM.1979.103824
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.