Degree of simultaneous approximation by Birkhoff splines
DOI:
https://doi.org/10.33993/jnaat302-694Keywords:
Birkhoff splines, Lagrange inverse interpolation, error estimates, higher order moduli of continuityAbstract
In the present note we study the degree of simultaneous approximation by certain Birkhoff spline interpolation operators. Special emphasis is on estimates in terms of higher order moduli of smoothness. This generalizes earlier results of Meir and Sharma, Demko, Howell and Varma, and Buckett and Varma.Downloads
References
Burkett, J. and Varma, A. K., Lacunary interpolation by splines, (0,1,2,4) case, in: Constructive Theory of Functions (Proc. Int. Conf. Varna 1991; ed. by K.G. Ivanov et al.), pp. 9-17, Publ. House of the Bulgarian Academy of Sciences, Sofia, 1992.
Burkett, J. and Varma, A. K., Lacunary spline interpolation, Suppl. Rend. Circ. Mat. Palermo, (2) 33, pp. 219-228, 1993.
Carlson, R. E. and Hall, C. A., Bicubic spline interpolation in rectangular polygons, J. Approx. Theory, 6, pp. 366-377, 1972, https://doi.org/10.1016/0021-9045(72)90044-5 DOI: https://doi.org/10.1016/0021-9045(72)90044-5
Demko, S., Lacunary polynomial spline interpolation, SIAM J. Numer. Anal., 13, pp. 369-381, 1976, https://doi.org/10.1137/0713033 DOI: https://doi.org/10.1137/0713033
DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Gonska, H. H., Degree of approximation by lacunary interpolators: (0,…,R-2,R) interpolation, Rocky Mountain J. Math., 19, pp. 157-171, 1989, https://doi.org/10.1216/rmj-1989-19-1-157 DOI: https://doi.org/10.1216/RMJ-1989-19-1-157
Gonska, H. H., Degree of simultaneous approximation of bivariate functions by Gordon operators, J. Approx. Theory, 62, pp. 170-191, 1990, https://doi.org/10.1016/0021-9045(90)90030-t DOI: https://doi.org/10.1016/0021-9045(90)90030-T
Gonska, H. H. and Knoop, H. B., On Hermite-Fejér Interpolation: A Bibliography (1914-1987), Studia Sci. Math. Hungar., 25, pp. 147-198, 1990.
Howell, G. and Varma, A. K., (0,2) interpolation with quartic splines, Numer. Funct. Anal. Optimization, 11, pp. 929-936, 1991, https://doi.org/10.1080/01630569108816410 DOI: https://doi.org/10.1080/01630569108816410
Kacsó, D. P. and Gonska, H. H., Simultaneous approximation by (0,…,R-2,R) interpolators, Calcolo, 32, pp. 177-191, 1995, https://doi.org/10.1007/bf02575834 DOI: https://doi.org/10.1007/BF02575834
Kacsó, D. P. and Gonska, H. H., Simultaneous approximation by Birkhoff interpolators, Rocky Mountain J. Math., 26, pp. 1303-1320, 1998, https://doi.org/10.1216/rmjm/1181071718 DOI: https://doi.org/10.1216/rmjm/1181071718
Lorentz, G. G., Jetter, K. and Riemenschneider, S. D., Birkhoff Interpolation, Addison-Wesley, Reading, MA, 1983. DOI: https://doi.org/10.1017/CBO9780511662959
Meir, A. and Sharma, A., Lacunary interpolation by splines, SIAM J. Numer. Anal., 10, pp. 433-442, 1973, https://doi.org/10.1137/0710037 DOI: https://doi.org/10.1137/0710037
Prasad, J. and Varma, A. K., Lacunary interpolation by quintic splines, SIAM J. Numer. Anal., 16, pp. 1075-1079, 1979, https://doi.org/10.1137/0716079 DOI: https://doi.org/10.1137/0716079
Sharma, A. and Meir, A., Degree of approximation of spline interpolation, J. Math. Mech., 15, pp. 759-767, 1966, https://doi.org/10.1512/iumj.1966.15.15051 DOI: https://doi.org/10.1512/iumj.1966.15.15051
Schoenberg, I. J., On the Ahlberg-Nilson extension of spline interpolation: The g-splines and their optimal properties, J. Math. Anal. Appl., 21, pp. 207-231, 1968, https://doi.org/10.1016/0022-247x(68)90252-7 DOI: https://doi.org/10.1016/0022-247X(68)90252-7
Schumaker, L. L., Spline Functions: Basic Theory, John Wiley and Sons, New York, 1981.
Swartz, B. and Varga, R. S., A note on lacunary interpolation by splines, SIAM J. Numer. Anal., 10, pp. 443-447, 1973, https://doi.org/10.1137/0710038 DOI: https://doi.org/10.1137/0710038
Varma, A. K., Lacunary interpolation by splines, I, Acta Math. Acad. Sci. Hung., 31, pp. 185-192, 1978, https://doi.org/10.1007/bf01901969 DOI: https://doi.org/10.1007/BF01901969
Varma, A. K., Lacunary interpolation by splines, II, Acta Math. Acad. Sci. Hung., 31, pp. 193-203, 1978, https://doi.org/10.1007/bf01901970 DOI: https://doi.org/10.1007/BF01901970
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.