Degree of simultaneous approximation by Birkhoff splines

Authors

  • Heiner Gonska Gerhard Mercator University, Germany
  • Daniela Kacsó Gerhard Mercator University, Germany

DOI:

https://doi.org/10.33993/jnaat302-694

Keywords:

Birkhoff splines, Lagrange inverse interpolation, error estimates, higher order moduli of continuity
Abstract views: 204

Abstract

In the present note we study the degree of simultaneous approximation by certain Birkhoff spline interpolation operators. Special emphasis is on estimates in terms of higher order moduli of smoothness. This generalizes earlier results of Meir and Sharma, Demko, Howell and Varma, and Buckett and Varma.

Downloads

Download data is not yet available.

References

Burkett, J. and Varma, A. K., Lacunary interpolation by splines, (0,1,2,4) case, in: Constructive Theory of Functions (Proc. Int. Conf. Varna 1991; ed. by K.G. Ivanov et al.), pp. 9-17, Publ. House of the Bulgarian Academy of Sciences, Sofia, 1992.

Burkett, J. and Varma, A. K., Lacunary spline interpolation, Suppl. Rend. Circ. Mat. Palermo, (2) 33, pp. 219-228, 1993.

Carlson, R. E. and Hall, C. A., Bicubic spline interpolation in rectangular polygons, J. Approx. Theory, 6, pp. 366-377, 1972, https://doi.org/10.1016/0021-9045(72)90044-5 DOI: https://doi.org/10.1016/0021-9045(72)90044-5

Demko, S., Lacunary polynomial spline interpolation, SIAM J. Numer. Anal., 13, pp. 369-381, 1976, https://doi.org/10.1137/0713033 DOI: https://doi.org/10.1137/0713033

DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Gonska, H. H., Degree of approximation by lacunary interpolators: (0,…,R-2,R) interpolation, Rocky Mountain J. Math., 19, pp. 157-171, 1989, https://doi.org/10.1216/rmj-1989-19-1-157 DOI: https://doi.org/10.1216/RMJ-1989-19-1-157

Gonska, H. H., Degree of simultaneous approximation of bivariate functions by Gordon operators, J. Approx. Theory, 62, pp. 170-191, 1990, https://doi.org/10.1016/0021-9045(90)90030-t DOI: https://doi.org/10.1016/0021-9045(90)90030-T

Gonska, H. H. and Knoop, H. B., On Hermite-Fejér Interpolation: A Bibliography (1914-1987), Studia Sci. Math. Hungar., 25, pp. 147-198, 1990.

Howell, G. and Varma, A. K., (0,2) interpolation with quartic splines, Numer. Funct. Anal. Optimization, 11, pp. 929-936, 1991, https://doi.org/10.1080/01630569108816410 DOI: https://doi.org/10.1080/01630569108816410

Kacsó, D. P. and Gonska, H. H., Simultaneous approximation by (0,…,R-2,R) interpolators, Calcolo, 32, pp. 177-191, 1995, https://doi.org/10.1007/bf02575834 DOI: https://doi.org/10.1007/BF02575834

Kacsó, D. P. and Gonska, H. H., Simultaneous approximation by Birkhoff interpolators, Rocky Mountain J. Math., 26, pp. 1303-1320, 1998, https://doi.org/10.1216/rmjm/1181071718 DOI: https://doi.org/10.1216/rmjm/1181071718

Lorentz, G. G., Jetter, K. and Riemenschneider, S. D., Birkhoff Interpolation, Addison-Wesley, Reading, MA, 1983. DOI: https://doi.org/10.1017/CBO9780511662959

Meir, A. and Sharma, A., Lacunary interpolation by splines, SIAM J. Numer. Anal., 10, pp. 433-442, 1973, https://doi.org/10.1137/0710037 DOI: https://doi.org/10.1137/0710037

Prasad, J. and Varma, A. K., Lacunary interpolation by quintic splines, SIAM J. Numer. Anal., 16, pp. 1075-1079, 1979, https://doi.org/10.1137/0716079 DOI: https://doi.org/10.1137/0716079

Sharma, A. and Meir, A., Degree of approximation of spline interpolation, J. Math. Mech., 15, pp. 759-767, 1966, https://doi.org/10.1512/iumj.1966.15.15051 DOI: https://doi.org/10.1512/iumj.1966.15.15051

Schoenberg, I. J., On the Ahlberg-Nilson extension of spline interpolation: The g-splines and their optimal properties, J. Math. Anal. Appl., 21, pp. 207-231, 1968, https://doi.org/10.1016/0022-247x(68)90252-7 DOI: https://doi.org/10.1016/0022-247X(68)90252-7

Schumaker, L. L., Spline Functions: Basic Theory, John Wiley and Sons, New York, 1981.

Swartz, B. and Varga, R. S., A note on lacunary interpolation by splines, SIAM J. Numer. Anal., 10, pp. 443-447, 1973, https://doi.org/10.1137/0710038 DOI: https://doi.org/10.1137/0710038

Varma, A. K., Lacunary interpolation by splines, I, Acta Math. Acad. Sci. Hung., 31, pp. 185-192, 1978, https://doi.org/10.1007/bf01901969 DOI: https://doi.org/10.1007/BF01901969

Varma, A. K., Lacunary interpolation by splines, II, Acta Math. Acad. Sci. Hung., 31, pp. 193-203, 1978, https://doi.org/10.1007/bf01901970 DOI: https://doi.org/10.1007/BF01901970

Downloads

Published

2001-08-01

How to Cite

Gonska, H., & Kacsó, D. (2001). Degree of simultaneous approximation by Birkhoff splines. Rev. Anal. Numér. Théor. Approx., 30(2), 163–178. https://doi.org/10.33993/jnaat302-694

Issue

Section

Articles