Inequalities for some iterated linear operators and their applications in approximation theory
DOI:
https://doi.org/10.33993/jnaat302-696Abstract
Some inequalities for the ”derivatives” of iterated linear operators will be presented, which will be applied for the investigation of degrees of approximation. Thus, with the application of the Laplacian we improve some classical results concerning the Jackson type estimate, the inverse theorem as well as the saturation phenomenonDownloads
References
Bennett, C. and Sharply, R., Interpolation of Operators, Academic Press, New York, 1988.
DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Gonska, H. H. and Zhou, X. L., The strong converse inequality for Bernstein-Kantorovich operators, Comput. Math. Appl., 30 (3-6), pp. 103-128, 1995, https://doi.org/10.1016/0898-1221(95)00089-5 DOI: https://doi.org/10.1016/0898-1221(95)00089-5
Johnen, H. and Scherer, K., On the equivalence of the K-functional and moduli of continuity and some applications, In: Constructive Theory of Functions of Several Variables (Proc. Conf., Oberwolfach 1976), 119-140. Lecture Notes in Mathematics 571, Springer-Verlag, 1977, https://doi.org/10.1007/bfb0086569 DOI: https://doi.org/10.1007/BFb0086569
Jackson, D., On the approximation by trigonometric sums and polynomials, TAMS, 13, pp. 491-515, 1912, https://doi.org/10.1090/s0002-9947-1912-1500930-2 DOI: https://doi.org/10.1090/S0002-9947-1912-1500930-2
Knoop, H.-B. and Zhou, X. L., The lower estimate for linear positive operators, I., Constr. Approx., 11, pp. 53-66, 1995, https://doi.org/10.1007/bf01294338 DOI: https://doi.org/10.1007/BF01294338
Knoop, H.-B. and Zhou, X. L., The lower estimate for linear positive operators, II., Results Math., 25, pp. 315-330, 1994, https://doi.org/10.1007/bf03323413 DOI: https://doi.org/10.1007/BF03323413
Knoop, H.-B. and Zhou, X. L., Some inequalities for trigonometric polynomials and their derivatives, International Series of Numerical Mathematics, Vol. 132, Birkhäuser-Verlag 1999, pp. 87-94, https://doi.org/10.1007/978-3-0348-8696-3_6 DOI: https://doi.org/10.1007/978-3-0348-8696-3_6
Knoop, H.-B. and Zhou, X. L., Inequalities for trigonometric polynomials and some integral means, to appear in J. Mathematical Analysis and Applications, https://doi.org/10.1006/jmaa.2000.7212 DOI: https://doi.org/10.1006/jmaa.2000.7212
Knoop, H.-B. and Zhou, X. L., On Jackson integral operator, (preprint).
Lorentz, G. G., Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
Nikol'skii, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, 1975, https://doi.org/10.1007/978-3-642-65711-5 DOI: https://doi.org/10.1007/978-3-642-65711-5
Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1975.
Timan, A. F., Theory of Approximation of Functions of a Real Variable, Physics and Mathematics Publishing House, Moscow, 1960.
Zhou, X. L., Approximation by multivariate Bernstein operators, Results Math., 25, pp. 166-191, 1994, https://doi.org/10.1007/bf03323150 DOI: https://doi.org/10.1007/BF03323150
Zhou, X. L., Degree of approximation associated with some elliptic operators and its applications, Approx. Theory Appl., 2, pp. 9-29, 1995. DOI: https://doi.org/10.1007/BF02836276
Zhou, X. L., Approximationsordnung und Regularität von Differentialoperatoren, Habilitationsschrift, Gerhard-Mercator-Universität Duisburg, 1996.
Zygmund, A., Trigonometric Series. Vol. I and II, 2nd ed., Cambridge University Press, Cambridge, 1990.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.