Inequalities for some iterated linear operators and their applications in approximation theory

Authors

  • Hans-Bernd Knoop Gerhard-Mercator-University of Duisburg, Germany
  • Xinlong Zhou Gerhard-Mercator-University of Duisburg, Germany

DOI:

https://doi.org/10.33993/jnaat302-696

Abstract

Some inequalities for the ”derivatives” of iterated linear operators will be presented, which will be applied for the investigation of degrees of approximation. Thus, with the application of the Laplacian we improve some classical results concerning the Jackson type estimate, the inverse theorem as well as the saturation phenomenon

Downloads

Download data is not yet available.

References

Bennett, C. and Sharply, R., Interpolation of Operators, Academic Press, New York, 1988.

DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Gonska, H. H. and Zhou, X. L., The strong converse inequality for Bernstein-Kantorovich operators, Comput. Math. Appl., 30 (3-6), pp. 103-128, 1995, https://doi.org/10.1016/0898-1221(95)00089-5 DOI: https://doi.org/10.1016/0898-1221(95)00089-5

Johnen, H. and Scherer, K., On the equivalence of the K-functional and moduli of continuity and some applications, In: Constructive Theory of Functions of Several Variables (Proc. Conf., Oberwolfach 1976), 119-140. Lecture Notes in Mathematics 571, Springer-Verlag, 1977, https://doi.org/10.1007/bfb0086569 DOI: https://doi.org/10.1007/BFb0086569

Jackson, D., On the approximation by trigonometric sums and polynomials, TAMS, 13, pp. 491-515, 1912, https://doi.org/10.1090/s0002-9947-1912-1500930-2 DOI: https://doi.org/10.1090/S0002-9947-1912-1500930-2

Knoop, H.-B. and Zhou, X. L., The lower estimate for linear positive operators, I., Constr. Approx., 11, pp. 53-66, 1995, https://doi.org/10.1007/bf01294338 DOI: https://doi.org/10.1007/BF01294338

Knoop, H.-B. and Zhou, X. L., The lower estimate for linear positive operators, II., Results Math., 25, pp. 315-330, 1994, https://doi.org/10.1007/bf03323413 DOI: https://doi.org/10.1007/BF03323413

Knoop, H.-B. and Zhou, X. L., Some inequalities for trigonometric polynomials and their derivatives, International Series of Numerical Mathematics, Vol. 132, Birkhäuser-Verlag 1999, pp. 87-94, https://doi.org/10.1007/978-3-0348-8696-3_6 DOI: https://doi.org/10.1007/978-3-0348-8696-3_6

Knoop, H.-B. and Zhou, X. L., Inequalities for trigonometric polynomials and some integral means, to appear in J. Mathematical Analysis and Applications, https://doi.org/10.1006/jmaa.2000.7212 DOI: https://doi.org/10.1006/jmaa.2000.7212

Knoop, H.-B. and Zhou, X. L., On Jackson integral operator, (preprint).

Lorentz, G. G., Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.

Nikol'skii, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, 1975, https://doi.org/10.1007/978-3-642-65711-5 DOI: https://doi.org/10.1007/978-3-642-65711-5

Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1975.

Timan, A. F., Theory of Approximation of Functions of a Real Variable, Physics and Mathematics Publishing House, Moscow, 1960.

Zhou, X. L., Approximation by multivariate Bernstein operators, Results Math., 25, pp. 166-191, 1994, https://doi.org/10.1007/bf03323150 DOI: https://doi.org/10.1007/BF03323150

Zhou, X. L., Degree of approximation associated with some elliptic operators and its applications, Approx. Theory Appl., 2, pp. 9-29, 1995. DOI: https://doi.org/10.1007/BF02836276

Zhou, X. L., Approximationsordnung und Regularität von Differentialoperatoren, Habilitationsschrift, Gerhard-Mercator-Universität Duisburg, 1996.

Zygmund, A., Trigonometric Series. Vol. I and II, 2nd ed., Cambridge University Press, Cambridge, 1990.

Downloads

Published

2001-08-01

Issue

Section

Articles

How to Cite

Knoop, H.-B., & Zhou, X. (2001). Inequalities for some iterated linear operators and their applications in approximation theory. Rev. Anal. Numér. Théor. Approx., 30(2), 197-206. https://doi.org/10.33993/jnaat302-696