On some Aitken-Steffensen-Halley-type methods for approximating the roots of scalar equations
Abstract
In this note we extend the Aitken-Steffensen method to the Halley transformation. Under some rather simple assumptions we obtain error bounds for each iteration step; moreover, the convergence order of the iterates is 3, i.e. higher than for the Aitken-Steffensen case.Downloads
References
A. Ben-Israel, Newton's method with modified functions, Contemp. Math., 204, pp. 39-50, 1997, https://doi.org/10.1090/conm/204/02621
G.H. Brown, Jr., On Halley's variation of Newton's method, Amer. Math. Monthly, 84, pp. 726-728, 1977.
V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: The Halley's method, Computing, 44, pp. 169-184, 1990, https://doi.org/10.1007/bf02241866
G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, El. Math., 51, pp. 28-34, 1996.
W.F. Ford and J.A. Pennline, Accelerated convergence in Newton method, SIAM Rev., 38, pp. 658-659, 1996, https://doi.org/10.1137/s0036144594292972
J. Gerlach, Accelerated convergence in Newton's method, SIAM Rev., 36, pp. 272-276, 1994, https://doi.org/10.1137/1036057
D. Luca and I. Păvăloiu, On the Heron's method for the approximation of the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 28, pp. 103-108, 1997.
A. Melman, Geometry and convergence of Euler's and Halley's methods, SIAM Rev., 39, pp. 728-735, 1997, https://doi.org/10.1137/s0036144595301140
A.M. Ostrowski, The Solution of Equations and Systems of Equations, Academic Press, New York-London, 1960.
I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen method, Mathematica (Cluj), 35 (58), pp. 171-76, 1993.
I. Păvăloiu, Approximation of the roots of equations by Aitken--Steffensen-type monotonic sequences, Calcolo, 32, pp. 69-82, 1995, https://doi.org/10.1007/bf02576543
I. Păvăloiu, On a Halley-Steffensen method for approximating the solutions of scalar equations, Rev. Anal. Numer. Théor. Approx., 30, 2001 no. 1, pp. 69-74.
T. Popoviciu, Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl., 13, pp. 75-78, 1968.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.