REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION
ON THE EXTREMAL SEMI-LIPSCHITZ FUNCTIONS
Abstract
The extremal elements of the unit balls of Banach spaces play an important role in the study of the geometry of the space as well in various applications. For Banach spaces of Lipschitz real functions the extremal elements of the unit ball are investigates in numerous papers (S. Cobzas 1989, J. D. Farmer 1994, N. V. Rao and A. C. Roy 1970, Roy 1968 and in the references therein). In this note we shall present a procedure to obtain extremal elements of the unit ball of the quasi-normed semilinear space of real-valued semi-Lipschitz functions defined on a quasi-metric space.
Keywords. semi metric spaces, semi Lipschitz real functions.
1. INTRODUCTION
quasi - metric if it satisfies the conditions:
(i)
(ii)
or
(i')
and (ii), for all
Remark that
A function
a)
or, equivalently
Let
(i)
(ii)
(iii)
for all
(i)
(ii)
(iii)
(iv)
The opposite element (if exists) of
A functional
(i)
(ii)
(iii)
Let
A subset
a) For every
b) For every
c) If
b) Let
Indeed, if
Now let be given
REFERENCES
[2] Cobzaş, S., Extreme points in Banach spaces of Lipschitz functions, Mathematica, 31 (54), pp. 25-33, 1989.
[3] Farmer, J. D., Extreme points of the unit ball of the space of Lipschitz functions, Proc. Amer. Math. Soc., 121, no. 3, pp. 807-813, 1994.
[4] Krein, M. G. and A. A. Nudel'man, The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973, (in Russian).
[5] Koppermann, R. D., All topologies come from generalized metrics, Amer. Math. Monthly, 95, pp. 89-97, 1988.
[6] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837842, 1934.
[7] Mustăţa, C., Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, pp. 222-230, 1977.
[8] Mustăţa, C., Uniquenness of the extension of semi-Lipschitz functions on quasi-metric spaces, Bull. Şt. Univ. Baia Mare, Mat.-Inf., XVI, no. 2, pp. 207-212, 2000.
[9] Mustăţa, C., Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., 2001 (to appear). ©
[10] Phelps, R. R., Uniqueness of Hahn-Banach extension and unique best approximation, Trans. Amer. Math. Soc., 95, pp. 238-255, 1960.
[11] Rao, N. V. and Roy, A. K., Extreme Lipschitz functions, Math. Ann., 189, pp. 26-46, 1970.
[12] Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric space, J. Approx. Theory, 103, pp. 293-301, 2000.
[13] Roy, A. K., Extreme points and linear isometries of Banach spaces of Lipschitz functions, Canad. J. Math., 20, pp. 1150-1164, 1968.
[14] Wells, J. H. and Williams, L. R., Embedings and Extensions in Analysis, SpringerVerlag, Berlin, 1975.
- *"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro.
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory

This work is licensed under a Creative Commons Attribution 4.0 International License.







