Use of identity of A. Hurwitz for construction of a linear positive operator of approximation
DOI:
https://doi.org/10.33993/jnaat311-714Keywords:
Hurwitz's identity, Abel's generalization of the binomial formula, linear positive operator of approximation, the Peano theorem, divided differenceAbstract
By using a general algebraic identity of Adolf Hurwitz [1], which generalizes an important identity of Abel, we construct a new operatorA special case of this is the operator
Downloads
References
Hurwitz, A., Über Abel's Vereingemeinerung der Binomischen Formel, Acta Mathematica, 26, pp. 199-203, 1902, https://doi.org/10.1007/BF02415491 DOI: https://doi.org/10.1007/BF02415491
Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica (Cluj), 1 (24), pp. 95-142, 1959,
Stancu, D. D., Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp., 17, pp. 270-278, 1963, https://doi.org/10.1090/S0025-5718-1963-0179524-6 DOI: https://doi.org/10.1090/S0025-5718-1963-0179524-6
Stancu, D. D. and Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26, pp. 221-227, 1997, http://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art30
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.