Stancu modified operators revisited
DOI:
https://doi.org/10.33993/jnaat311-703Keywords:
Kantorovich and Stancu operators, moduli of smoothness, \(K\)-functionals, contraction principle, weakly Picard operatorsAbstract
In this paper we construct a general positive approximation process representing an integral form in Kantorovich sense of the Stancu operators. By using K-functionals and some moduli of smoothness we give direct theorems for pointwise approximation. Also, by using the contraction principle we reobtain the convergence of the iterates of Stancu polynomials.Downloads
References
Agratini, O., On some properties by Stancu-Kantorovich polynomials in L_{p} spaces, in: Seminar of Numerical and Statistical Calculus (Gh. Coman, ed.), pp. 1-8, Babeş-Bolyai Univ., Faculty of Math. and Computer Science, Cluj-Napoca, 1999.
Altomare, F., and Campiti, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Series Studies in Mathematics, 17, Walter de Gruyter, Berlin, 1994. DOI: https://doi.org/10.1515/9783110884586
Della Vecchia, B. and Mache, D.H., On approximation properties of Stancu-Kantorovich operators, Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 71-80, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art8
Ditzian, Z., and Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, New York-Berlin, 1987. DOI: https://doi.org/10.1007/978-1-4612-4778-4
Guo, S., Liu, L., and X. Liu, The pointwise estimate for modified Bernstein operators, Studia Sci. Math. Hungarica, 37, pp. 69-81, 2001. DOI: https://doi.org/10.1556/sscmath.37.2001.1-2.4
Lenze, B., On Lipschitz-type maximal functions and their smoothness spaces, Proc. Netherl. Acad. Sci. A, 91, pp. 53-63, 1988, https://doi.org/10.1016/1385-7258(88)90007-8. DOI: https://doi.org/10.1016/1385-7258(88)90007-8
Mastroianni, G. and Occorsio, M.R., Una generalizatione dell'operatore di Stancu, Rend. Accad. Sci. Fis. Mat. Napoli, 45, no. 4, pp. 495-511, 1978.
Q. Razi, Approximation of a function by Kantorovich type operators, Matematički Vesnik, 41, pp. 183-192, 1989.
Rus, I.A., Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl. (submitted), https://doi.org/10.1016/j.jmaa.2003.11.056. DOI: https://doi.org/10.1016/j.jmaa.2003.11.056
Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures et Appl., 13, no. 8, pp. 1173-1194, 1968.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.