On the convergence of a method for solving two point boundary value problems by optimal control
DOI:
https://doi.org/10.33993/jnaat312-727Keywords:
two point boundary value problem, optimal control, least squares method, gradient methodAbstract
Using the idea of the least squares method, a nonlinear two point boundary value problem is transformed into an optimal control problem. For solving the optimal control problem the gradient method is used. The convergence of the method is investigated and numerical results are reported.Downloads
References
Ascher, U., Christiansen, J. and Russel, R. D., COLSYS-A collocation code for boundary value problems, Proceedings of Working Conference for Codes for Boundary Value Problems in ODE's, Houston, Texas, 1978. DOI: https://doi.org/10.1007/3-540-09554-3_12
Ascher, U., Christiansen, J. and Russel, R. D., A collocation solver for mixed order systems of boundary value problems, Math. Comp., 33, pp. 659-679, 1979, https://doi.org/10.1090/S0025-5718-1979-0521281-7 DOI: https://doi.org/10.1090/S0025-5718-1979-0521281-7
Fedorenko, R. P., Approximate Solutions for Optimal Control Problem, Nauka, Moskva, 1973 (in Russian).
Goh, C. J. and Teo, K. L., Control parametrization: a unified approach to optimal control problems with general constraints, Automatica, 24, no. 1, pp. 3-18, 1988, https://doi.org/10.1016/0005-1098(88)90003-9 DOI: https://doi.org/10.1016/0005-1098(88)90003-9
Goh, C. J. and Teo, K. L., MISER: a FORTRAN program for solving optimal control problems, Adv. Eng. Software, 10, no. 2, pp. 90-99, 1988, https://doi.org/10.1016/0141-1195(88)90005-8 DOI: https://doi.org/10.1016/0141-1195(88)90005-8
Keller, H. B., Numerical Solution of Two Point Boundary Value Problems, SIAM Regional Conf., Ser. Appl. Math., 24, SIAM, Philadelphia, 1976. DOI: https://doi.org/10.1137/1.9781611970449
Klessig, R. and Polak, E., An adaptive precision gradient method for optimal control, SIAM J. Control, 11, no. 1, pp. 80-93, 1973, https://doi.org/10.1137/0311006 DOI: https://doi.org/10.1137/0311006
Marzulli, P., Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math., 34, pp. 233-241, 1991, https://doi.org/10.1016/0377-0427(91)90045-L DOI: https://doi.org/10.1016/0377-0427(91)90045-L
Miele, A., Recent advances in gradient algorithms for optimal control problems, J. Optim. Theory Appl., 17, pp. 361-430, 1975, https://doi.org/10.1007/BF00932781 DOI: https://doi.org/10.1007/BF00932781
Polak, E., Computational Methods in Optimization, Academic Press, New York, 1971.
Scheiber, E., Numerical solution of a nonlinear two point boundary value problem by optimal control methods, Bull. Univ. Braşov, 30, ser. C, pp. 51-56, 1988.
Sokolowski, J., Matsumura, T. and Sakawa, Y., Numerical solution of a nonlinear two point boundary value problem by an optimization technique, Control and Cybernetics, 11, nos. 1-2, pp. 41-56, 1982.
Teo, K. L., Goh, C. J. and Wong, K. H., A Unified Computational Approach to Optimal Control Problems, Longman Scientific & Technical, New-York, 1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.