On the convergence of a method for solving two point boundary value problems by optimal control

Authors

  • Ernest Scheiber “Transilvania” University of Brasov, Romania

DOI:

https://doi.org/10.33993/jnaat312-727

Keywords:

two point boundary value problem, optimal control, least squares method, gradient method
Abstract views: 181

Abstract

Using the idea of the least squares method, a nonlinear two point boundary value problem is transformed into an optimal control problem. For solving the optimal control problem the gradient method is used. The convergence of the method is investigated and numerical results are reported.

Downloads

Download data is not yet available.

References

Ascher, U., Christiansen, J. and Russel, R. D., COLSYS-A collocation code for boundary value problems, Proceedings of Working Conference for Codes for Boundary Value Problems in ODE's, Houston, Texas, 1978. DOI: https://doi.org/10.1007/3-540-09554-3_12

Ascher, U., Christiansen, J. and Russel, R. D., A collocation solver for mixed order systems of boundary value problems, Math. Comp., 33, pp. 659-679, 1979, https://doi.org/10.1090/S0025-5718-1979-0521281-7 DOI: https://doi.org/10.1090/S0025-5718-1979-0521281-7

Fedorenko, R. P., Approximate Solutions for Optimal Control Problem, Nauka, Moskva, 1973 (in Russian).

Goh, C. J. and Teo, K. L., Control parametrization: a unified approach to optimal control problems with general constraints, Automatica, 24, no. 1, pp. 3-18, 1988, https://doi.org/10.1016/0005-1098(88)90003-9 DOI: https://doi.org/10.1016/0005-1098(88)90003-9

Goh, C. J. and Teo, K. L., MISER: a FORTRAN program for solving optimal control problems, Adv. Eng. Software, 10, no. 2, pp. 90-99, 1988, https://doi.org/10.1016/0141-1195(88)90005-8 DOI: https://doi.org/10.1016/0141-1195(88)90005-8

Keller, H. B., Numerical Solution of Two Point Boundary Value Problems, SIAM Regional Conf., Ser. Appl. Math., 24, SIAM, Philadelphia, 1976. DOI: https://doi.org/10.1137/1.9781611970449

Klessig, R. and Polak, E., An adaptive precision gradient method for optimal control, SIAM J. Control, 11, no. 1, pp. 80-93, 1973, https://doi.org/10.1137/0311006 DOI: https://doi.org/10.1137/0311006

Marzulli, P., Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math., 34, pp. 233-241, 1991, https://doi.org/10.1016/0377-0427(91)90045-L DOI: https://doi.org/10.1016/0377-0427(91)90045-L

Miele, A., Recent advances in gradient algorithms for optimal control problems, J. Optim. Theory Appl., 17, pp. 361-430, 1975, https://doi.org/10.1007/BF00932781 DOI: https://doi.org/10.1007/BF00932781

Polak, E., Computational Methods in Optimization, Academic Press, New York, 1971.

Scheiber, E., Numerical solution of a nonlinear two point boundary value problem by optimal control methods, Bull. Univ. Braşov, 30, ser. C, pp. 51-56, 1988.

Sokolowski, J., Matsumura, T. and Sakawa, Y., Numerical solution of a nonlinear two point boundary value problem by an optimization technique, Control and Cybernetics, 11, nos. 1-2, pp. 41-56, 1982.

Teo, K. L., Goh, C. J. and Wong, K. H., A Unified Computational Approach to Optimal Control Problems, Longman Scientific & Technical, New-York, 1991.

Downloads

Published

January 3, 2025

How to Cite

Scheiber, E. (2002). On the convergence of a method for solving two point boundary value problems by optimal control. Rev. Anal. Numér. Théor. Approx., 31(2), 217–227. https://doi.org/10.33993/jnaat312-727

Issue

Section

Articles