Sequences of linear operators related to Cesàro-convergent sequences

Authors

  • Mira-Cristiana Anisiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Valeriu Anisiu "Babeş Bolyai" University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-717

Keywords:

linear operators, Cesàro-convergent sequences
Abstract views: 203

Abstract

Given a Cesàro-convergent sequence of real numbers(an)nN, a sequence (φn)nN of operators is defined on the Banach space R(I,F) of regular functions defined on I=[0,1] and having values in a Banach space F, φn(f)=1nk=1nakf(kn).It is proved that if, in addition, the sequence (|a1|++|an|n)nN is bounded, then φn(f) converges to a01f, where a=limna1++ann. The converse of this statement is also true. Another result is that the supplementary condition can be dropped if the operators are considered on the space C1(I,F).

Downloads

References

Anisiu, V., A principle of double condensation of singularities using σ-porosity, "Babeş-Bolyai" Univ., Fac. of Math., Research Seminaries, Seminar on Math. Analysis, Preprint Nr. 7, pp. 85-88, 1985.

Cobzaş, S. and Muntean, I., Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31, pp. 138-153, 1981, https://doi.org/10.1016/0021-9045(81)90038-1 DOI: https://doi.org/10.1016/0021-9045(81)90038-1

Dieudonné, J., Fondements de l'analyse moderne, Paris, Gauthier-Villars, 1963.

Dunford, N. and Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley & Sons, New York, 1988.

Trif, T., On a problem from the Mathematical Contest, County Stage, Gazeta Matematică CVI (11), pp. 394-396, 2001 (in Romanian).

Downloads

Published

2002-08-01

Issue

Section

Articles

How to Cite

Anisiu, M.-C., & Anisiu, V. (2002). Sequences of linear operators related to Cesàro-convergent sequences. Rev. Anal. Numér. Théor. Approx., 31(2), 135-141. https://doi.org/10.33993/jnaat312-717