Sequences of linear operators related to Cesàro-convergent sequences

Authors

  • Mira-Cristiana Anisiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania
  • Valeriu Anisiu "Babeş Bolyai" University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-717

Keywords:

linear operators, Cesàro-convergent sequences
Abstract views: 185

Abstract

Given a Cesàro-convergent sequence of real numbers\((a_{n})_{n\in \mathbb{N}}\), a sequence \((\varphi_{n})_{n\in\mathbb{N}}\) of operators is defined on the Banach space \(\mathcal{R}(I,F)\) of regular functions defined on \(I=[0,1]\) and having values in a Banach space \(F\), \[\varphi_{n}(f)=\frac{1}{n}\sum_{k=1}^{n}a_{k}f\left( \tfrac{k}{n}\right) .\]It is proved that if, in addition, the sequence \(\big( \frac{\left|a_{1}\right| +\ldots+\left| a_{n}\right| }{n}\big)_{n\in\mathbb{N}}\) is bounded, then \(\varphi_{n}(f)\) converges to \(a\cdot\int\nolimits_{0}^{1}f,\) where \(a=\lim_{n\rightarrow\infty}\frac{a_{1}+\ldots+a_{n}}{n}.\) The converse of this statement is also true. Another result is that the supplementary condition can be dropped if the operators are considered on the space \(\mathcal{C}^{1}(I,F)\).

Downloads

Download data is not yet available.

References

Anisiu, V., A principle of double condensation of singularities using σ-porosity, "Babeş-Bolyai" Univ., Fac. of Math., Research Seminaries, Seminar on Math. Analysis, Preprint Nr. 7, pp. 85-88, 1985.

Cobzaş, S. and Muntean, I., Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31, pp. 138-153, 1981, https://doi.org/10.1016/0021-9045(81)90038-1 DOI: https://doi.org/10.1016/0021-9045(81)90038-1

Dieudonné, J., Fondements de l'analyse moderne, Paris, Gauthier-Villars, 1963.

Dunford, N. and Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley & Sons, New York, 1988.

Trif, T., On a problem from the Mathematical Contest, County Stage, Gazeta Matematică CVI (11), pp. 394-396, 2001 (in Romanian).

Downloads

Published

January 3, 2025

How to Cite

Anisiu, M.-C., & Anisiu, V. (2002). Sequences of linear operators related to Cesàro-convergent sequences. Rev. Anal. Numér. Théor. Approx., 31(2), 135–141. https://doi.org/10.33993/jnaat312-717

Issue

Section

Articles