Some remarks on the monotone iterative technique

Authors

  • Adriana Buică “Babes-Bolyai” University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-718

Keywords:

coincidence operator equation, monotone iterations, boundary value problem
Abstract views: 217

Abstract

We consider an abstract operator equation in coincidence form Lu=N(u) and establish some comparison results and existence results via the monotone iterative technique. We use a generalized iteration method developed by Carl-Heikkila (1999). An application to a boundary value problem for a second-order functional differential equation is considered.

Downloads

References

Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, pp. 621-709, 1976, https://doi.org/10.1137/1018114 DOI: https://doi.org/10.1137/1018114

Carl, S. and Heikkila, S., Operator and differential equations in ordered spaces, J. Math. Anal. Appl., 234, pp. 31-54, 1999, https://doi.org/10.1006/jmaa.1999.6299 DOI: https://doi.org/10.1006/jmaa.1999.6299

Goebel, K., A coincidence theorem, Bull. Acad. Pol. Sc., 16, pp. 733-735, 1968.

Nieto, J., An abstract monotone iterative technique, Nonlinear Analysis T.M.A., 28, pp. 1923-1933, 1997, https://doi.org/10.1016/S0362-546X(97)89710-6 DOI: https://doi.org/10.1016/S0362-546X(97)89710-6

Precup, R., Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Scientific Communications Meeting of "Aurel Vlaicu" University, Arad, 14A, pp. 105-108, 1996.

Rus, I. A., Picard operators and applications, Seminar on fixed point theory, Babeş-Bolyai University, Preprint 3, pp. 3-36, 1996.

Rus, I. A., Principles and Applications of the Fixed Point Theory, Editura Dacia, Cluj-Napoca, 1979 (in Romanian).

Schroder, J., Operator Inequalities, Academic Press, 1980.

Zeidler, E., Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, 1993.

Zhitao, Z., Some new results about abstract cones and operators, Nonlinear Analysis, 37, pp. 449-455, 1999, https://doi.org/10.1016/S0362-546X(98)00059-5 DOI: https://doi.org/10.1016/S0362-546X(98)00059-5

Zima, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio Mathematica, 31, pp. 325-332, 1998, https://doi.org/10.1515/dema-1998-0210 DOI: https://doi.org/10.1515/dema-1998-0210

Downloads

Published

2002-08-01

Issue

Section

Articles

How to Cite

Buică, A. (2002). Some remarks on the monotone iterative technique. Rev. Anal. Numér. Théor. Approx., 31(2), 143-151. https://doi.org/10.33993/jnaat312-718