Some remarks on the monotone iterative technique
DOI:
https://doi.org/10.33993/jnaat312-718Keywords:
coincidence operator equation, monotone iterations, boundary value problemAbstract
We consider an abstract operator equation in coincidence form \(Lu=N(u)\) and establish some comparison results and existence results via the monotone iterative technique. We use a generalized iteration method developed by Carl-Heikkila (1999). An application to a boundary value problem for a second-order functional differential equation is considered.Downloads
References
Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, pp. 621-709, 1976, https://doi.org/10.1137/1018114 DOI: https://doi.org/10.1137/1018114
Carl, S. and Heikkila, S., Operator and differential equations in ordered spaces, J. Math. Anal. Appl., 234, pp. 31-54, 1999, https://doi.org/10.1006/jmaa.1999.6299 DOI: https://doi.org/10.1006/jmaa.1999.6299
Goebel, K., A coincidence theorem, Bull. Acad. Pol. Sc., 16, pp. 733-735, 1968.
Nieto, J., An abstract monotone iterative technique, Nonlinear Analysis T.M.A., 28, pp. 1923-1933, 1997, https://doi.org/10.1016/S0362-546X(97)89710-6 DOI: https://doi.org/10.1016/S0362-546X(97)89710-6
Precup, R., Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Scientific Communications Meeting of "Aurel Vlaicu" University, Arad, 14A, pp. 105-108, 1996.
Rus, I. A., Picard operators and applications, Seminar on fixed point theory, Babeş-Bolyai University, Preprint 3, pp. 3-36, 1996.
Rus, I. A., Principles and Applications of the Fixed Point Theory, Editura Dacia, Cluj-Napoca, 1979 (in Romanian).
Schroder, J., Operator Inequalities, Academic Press, 1980.
Zeidler, E., Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, 1993.
Zhitao, Z., Some new results about abstract cones and operators, Nonlinear Analysis, 37, pp. 449-455, 1999, https://doi.org/10.1016/S0362-546X(98)00059-5 DOI: https://doi.org/10.1016/S0362-546X(98)00059-5
Zima, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio Mathematica, 31, pp. 325-332, 1998, https://doi.org/10.1515/dema-1998-0210 DOI: https://doi.org/10.1515/dema-1998-0210
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.