Some remarks on the monotone iterative technique

Authors

  • Adriana Buică “Babes-Bolyai” University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-718

Keywords:

coincidence operator equation, monotone iterations, boundary value problem
Abstract views: 202

Abstract

We consider an abstract operator equation in coincidence form \(Lu=N(u)\) and establish some comparison results and existence results via the monotone iterative technique. We use a generalized iteration method developed by Carl-Heikkila (1999). An application to a boundary value problem for a second-order functional differential equation is considered.

Downloads

Download data is not yet available.

References

Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, pp. 621-709, 1976, https://doi.org/10.1137/1018114 DOI: https://doi.org/10.1137/1018114

Carl, S. and Heikkila, S., Operator and differential equations in ordered spaces, J. Math. Anal. Appl., 234, pp. 31-54, 1999, https://doi.org/10.1006/jmaa.1999.6299 DOI: https://doi.org/10.1006/jmaa.1999.6299

Goebel, K., A coincidence theorem, Bull. Acad. Pol. Sc., 16, pp. 733-735, 1968.

Nieto, J., An abstract monotone iterative technique, Nonlinear Analysis T.M.A., 28, pp. 1923-1933, 1997, https://doi.org/10.1016/S0362-546X(97)89710-6 DOI: https://doi.org/10.1016/S0362-546X(97)89710-6

Precup, R., Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Scientific Communications Meeting of "Aurel Vlaicu" University, Arad, 14A, pp. 105-108, 1996.

Rus, I. A., Picard operators and applications, Seminar on fixed point theory, Babeş-Bolyai University, Preprint 3, pp. 3-36, 1996.

Rus, I. A., Principles and Applications of the Fixed Point Theory, Editura Dacia, Cluj-Napoca, 1979 (in Romanian).

Schroder, J., Operator Inequalities, Academic Press, 1980.

Zeidler, E., Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, 1993.

Zhitao, Z., Some new results about abstract cones and operators, Nonlinear Analysis, 37, pp. 449-455, 1999, https://doi.org/10.1016/S0362-546X(98)00059-5 DOI: https://doi.org/10.1016/S0362-546X(98)00059-5

Zima, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio Mathematica, 31, pp. 325-332, 1998, https://doi.org/10.1515/dema-1998-0210 DOI: https://doi.org/10.1515/dema-1998-0210

Downloads

Published

2002-08-01

How to Cite

Buică, A. (2002). Some remarks on the monotone iterative technique. Rev. Anal. Numér. Théor. Approx., 31(2), 143–151. https://doi.org/10.33993/jnaat312-718

Issue

Section

Articles