\(L^{p}\)-approximation \((p \geq 1)\) by Stancu-Kantorovich polynomials

Authors

  • Zoltán Finta “Babes-Bolyai” University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-719

Keywords:

Stancu-Kantorovich polynomials, the second modulus of smoothness of Ditzian-Totik
Abstract views: 196

Abstract

We establish direct and converse estimates for a generalized Kantorovich polynomial operator depending on a positive parameter.

Downloads

Download data is not yet available.

References

Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babeş-Bolyai, Math., 37, pp. 3-36, 1992.

Della Vecchia, B. and Mache, D. H., On approximation properties of Stancu-Kantorovich operators, Rev. Anal. Numér. Theor. Approx., 27, pp. 71-80, 1998, http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art8

Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer-Verlag, Berlin Heidelberg New York London, 1987. DOI: https://doi.org/10.1007/978-1-4612-4778-4

DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Gonska, H. H. and Zhou, X. L., The strong converse inequality for Bernstein-Kantorovich operators. Concrete analysis, Comput. Math. Appl., 30, no. 3-6, pp. 103-128, 1995, https://doi.org/10.1016/0898-1221(95)00089-5 DOI: https://doi.org/10.1016/0898-1221(95)00089-5

Razi, Q., Approximation of a function by Kantorovich type operators, Mat. Vesnic., 41, pp. 183-192, 1989.

Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 8, pp. 1173-1194, 1968.

Downloads

Published

2002-08-01

How to Cite

Finta, Z. (2002). \(L^{p}\)-approximation \((p \geq 1)\) by Stancu-Kantorovich polynomials. Rev. Anal. Numér. Théor. Approx., 31(2), 153–162. https://doi.org/10.33993/jnaat312-719

Issue

Section

Articles