Functions with bounded E-d-variation on undirected tree networks

Authors

  • Daniela Marian Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat312-722

Keywords:

networks, bounded Ed-variation
Abstract views: 187

Abstract

In this paper we define and study functions with bounded Ed-variation on undirected tree networks. For these functions with bounded Ed-variation we establish a Jordan type theorem. We adopt the definition of network as metric space introduced by P. M. Dearing and R. L. Francis (1974).

Downloads

References

Cristescu, G., Functions of bounded E-variation, Séminaire de la Théorie de la Meilleure Approximation, Convexité et Optimisation, Cluj-Napoca, October 26-29, pp. 73-85, 2000.

Dearing, P. M. and Francis, R. L., A minimax location problem on a network, Transportation Science, 8, pp. 333-343, 1974, https://doi.org/10.1287/trsc.8.4.333 DOI: https://doi.org/10.1287/trsc.8.4.333

Dearing, P. M., Francis, R. L. and Lowe, T. J., Convex location problems on tree networks, Oper. Res. 24, pp. 628-634, 1976, https://doi.org/10.1287/opre.24.4.628 DOI: https://doi.org/10.1287/opre.24.4.628

Iacob, M. E., Convexity, approximation and optimization on networks, PhD thesis, Babeş-Bolyai University, Cluj-Napoca, 1997 (in Romanian).

Labeé, M., Essay in network location theory, Cahiers de Centre d'Etudes et Recherche Oper., 27, 1-2, pp. 7-130, 1985.

Marian, D., Generalized convex functions and mathematical analysis on networks, Research on Theory of Allure, Approximation, Convexity and Optimization, Cluj-Napoca, pp. 183-206, 1999.

Marian, D., An axiomatic approach to the theory of E-convex functions, Proceedings of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 22-26, pp. 97-106, 2001.

Popoviciu, E., Mean Value Theorems in Mathematical Analysis and their Connection to the Interpolation Theory , Ed. Dacia, Cluj-Napoca, Romania, 1972 (in Romanian).

Youness, E. A., E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102, no. 2, pp. 439-450, 1999, http://dx.doi.org/10.1023/A:1021792726715 DOI: https://doi.org/10.1023/A:1021792726715

Downloads

Published

2002-08-01

Issue

Section

Articles

How to Cite

Marian, D. (2002). Functions with bounded E-d-variation on undirected tree networks. Rev. Anal. Numér. Théor. Approx., 31(2), 179-186. https://doi.org/10.33993/jnaat312-722