Bases for shape preserving curves
DOI:
https://doi.org/10.33993/jnaat321-738Keywords:
total positivity, shape preserving, optimal basesAbstract
The shape preserving properties of a curve in \(\mathbb{R}^2\) depend on the properties of the function basis we use in its representation. Both sign consistent and totally positive bases have shape preserving properties useful in Computer Aided Geometric Design. Some of the most useful properties are lightened and some examples of shape preserving bases are given.Downloads
References
Barsky, B. A., The beta-splines: a local representation based on shape parameters and fundamental geometric measures, Ph.D. dissertation, University of Utah, 1981.
Carnicer, J. M., Sign consistency and shape properties, in Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, pp. 41-48, 1998.
Carnicer, J. M., Goodman, T. N. T. and Peña, J. M., A generalization of the variation diminishing property, Adv. Comput. Math., 3, no. 4, pp. 375--394, 1995, https://doi.org/10.1007/BF02432004. DOI: https://doi.org/10.1007/BF02432004
Carnicer, J. M. and Peña, J. M., Shape preserving representation and optimality of the Bernstein basis, Adv. Comput. Math., 1, no. 2, pp. 173-196, 1993, https://doi.org/10.1007/BF02071384. DOI: https://doi.org/10.1007/BF02071384
Carnicer, J. M. and Peña, J. M., Totally positive bases for shape preserving curves design and optimality of B-splines, Comput. Aided Geom. Design, 11, no. 6, pp. 633-654, 1994, https://doi.org/10.1016/0167-8396(94)90056-6. DOI: https://doi.org/10.1016/0167-8396(94)90056-6
Carnicer, J. M. and Peña, J. M., Total positivity and optimal bases, in Total Positivity and its Applications (JACA 1994), M. Gasca and C. A. Micchelli (eds.), Kluwer Academic Publishers, Dordrecht, pp. 133--155, 1996. DOI: https://doi.org/10.1007/978-94-015-8674-0_8
Carnicer, J. M. and Peña, J. M., Characterization of the optimal Descartes' rules of signs, Math. Nachr., 189, pp. 33-48, 1998. DOI: https://doi.org/10.1002/mana.19981890104
de Casteljau, P., Outillage méthodes calcul, André Citröen Automobiles S.A., Paris, 1959.
Dyn, N. and Micchelli, C. A., Piecewise polynomial spaces and geometric continuity of curves, Numer. Math., 54, no. 3, pp. 319-337, 1988, https://doi.org/10.1007/BF01396765. DOI: https://doi.org/10.1007/BF01396765
Farin, G., Visually C² cubic splines, Comput. Aided Design, 14, pp. 137-139, 1982, https://doi.org/10.1016/0010-4485(82)90326-8. DOI: https://doi.org/10.1016/0010-4485(82)90326-8
Farin, G., Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Boston, MA, 1988. DOI: https://doi.org/10.1016/B978-0-12-460515-2.50020-2
Gasca, M. and Micchelli, C. A., Total Positivity and Its Applications, Kluwer Academic Publishers, Dordrecht, 1996. DOI: https://doi.org/10.1007/978-94-015-8674-0
Goodman, T. N. T., Shape preserving representations, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, pp. 333-357, 1989. DOI: https://doi.org/10.1016/B978-0-12-460515-2.50027-5
Goodman, T. N. T., Inflections on curves in two and three dimensions, Comput. Aided Geom. Design, 8, no. 1, pp. 37-50, 1991. DOI: https://doi.org/10.1016/0167-8396(91)90048-G
Goodman, T. N. T., Total positivity and the shape of curves, in Total Positivity and its Applications, M. Gasca and C. A. Micchelli (eds.), Kluwer Academic Publishers, pp. 157-186, 1996. DOI: https://doi.org/10.1007/978-94-015-8674-0_9
Goodman, T. N. T. and Micchelli, C. A., Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl., 99, pp. 225-252, 1988. DOI: https://doi.org/10.1016/0024-3795(88)90134-6
Gori, L., Pezza, L. and Pitolli, F., A class of totally positive blending B-Bases, in Curve and Surface Design: Saint Malo 1999, P. J. Laurent, P. Sablonnière, L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, TN, pp. 119-126, 2000.
Karlin, S., Total Positivity, Stanford University Press, Stanford, 1968.
Schmeltz, G., Variationesreduzierende Kurvendarstellungen und Krümmungskriterien für Bézierflächen, Thesis, Fachbereich Mathematik, Technische Hochschule Darmstadt, 1992.
Schumaker, L. L., Spline functions: basic theory, Krieger Publishing Company, Malabar, Florida, 1993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.