Supplementary directional relaxations for the acceleration of Kaczmarz's projection method

Authors

  • Constantin Popa “OVIDIUS” University, Constanta, Romania

DOI:

https://doi.org/10.33993/jnaat321-739

Keywords:

least-squares problems, Kaczmarz's projection algorithm, supplementary projections
Abstract views: 173

Abstract

Starting from an extension of Kaczmarz's method, obtained by us in a previous paper, we introduce new directions for projections. We prove that by this, we don't modify the set of limit points of the original extended Kaczmarz algorithm. For the class of boundary value problems or integral equations of the first kind, we describe a method for constructing these new directions. It is based on considering coarser level of discretization for the initial problem. Some numerical experiments are also presented.

Downloads

Download data is not yet available.

References

Censor, Y., Row-action methods for huge and sparse systems and their applications, SIAM Review, 23, no. 4, pp. 444-466, 1981, https://doi.org/10.1137/1023097. DOI: https://doi.org/10.1137/1023097

Censor, Y. and Stavros A. Z., Parallel optimization: theory, algorithms and applications, "Numer. math. and Sci. Comp." Series, Oxford Univ. Press, New York, 1997.

Engl., H. W., Regularization methods for the stable solution of inverse problems, Surv. Math. Ind., 3, pp. 71-143, 1993.

Golub, G. H. and van Loan, C. F., Matrix computations, The John's Hopkins Univ. Press, Baltimore, 1983.

Griebel, M., Multilevel algorithms considered as iterative methods on semidefinite systems, SIAM J. Sci. Comp., 15, no. 3, pp. 547-565, 1994, https://doi.org/10.1137/0915036. DOI: https://doi.org/10.1137/0915036

Kaczmarz, S., Angenaherte Auflosung von Systemen linearer Gleischungen, Bull. Acad. Polonaise Sci. et Lettres A, pp. 355-357, 1937.

Kress, R., Linear integral equations, Springer-Verlag, Berlin, 1989. DOI: https://doi.org/10.1007/978-3-642-97146-4

Popa, C., Least-squares solutions of overdetermined inconsistent linear systems using Kaczmarz's relaxation, Inter. J. Comp. Math., 55, pp. 79-89, 1995, https://doi.org/10.1080/00207169508804364. DOI: https://doi.org/10.1080/00207169508804364

Popa, C., Extensions of block-projections methods with relaxation parameters to inconsistent and rank-defficient least-squares problems, BIT, 38, no. 1, pp. 151-176, 1998, https://doi.org/10.1007/BF02510922. DOI: https://doi.org/10.1007/BF02510922

Popa, C., Characterization of the solutions set of inconsistent least-squares problems by an extended Kaczmarz algorithm, Korean J. Comp. Appl. Math., 6, no. 1, pp. 51-64, 1999, https://doi.org/10.1007/BF02941906. DOI: https://doi.org/10.1007/BF02941906

Popa, C., Preconditioned Kaczmarz-extended algorithm with relaxation parameters, Korean J. Comp. Appl. Math., 8, no. 1, pp. 9-26, 2000, https://doi.org/10.1007/BF03009946. DOI: https://doi.org/10.1007/BF03009946

Popa, C., Direct and iterative Kaczmarz-like solvers, submitted for publication, 2002.

Tanabe, K., Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17, pp. 203-214, 1971, https://doi.org/10.1007/BF01436376. DOI: https://doi.org/10.1007/BF01436376

Downloads

Published

2003-02-01

How to Cite

Popa, C. (2003). Supplementary directional relaxations for the acceleration of Kaczmarz’s projection method. Rev. Anal. Numér. Théor. Approx., 32(1), 99–108. https://doi.org/10.33993/jnaat321-739

Issue

Section

Articles