On stability conditions of vector \(l_\infty\)-extreme combinatorial problem with Pareto principle of optimality

Authors

  • Vladimir A. Emelichev Belarussian State University, Minsk, Belarus
  • Andrey M. Leonovich Belarussian State University, Minsk, Belarus

DOI:

https://doi.org/10.33993/jnaat321-732

Keywords:

vector \(l_\infty\)-extreme trajectorial problem, Pareto set, stability
Abstract views: 169

Abstract

We consider the multicriteria problem of combinatorial optimization with partial criteria of the kind MINMAX MODUL. The parameters of criteria are subject to "small" independent perturbations. The class of problems for which new Pareto optima do not appear, but some trajectories may lose optimality under those perturbations, is distinguished.

Downloads

Download data is not yet available.

References

Sergienko, I. V., Kozeratskaya, L. N. and Lebedeva, T. T., Stability Investigation and Parametric Analysis of Discrete Optimization Problem, Naukova Dumka, Kiev, 1995.

Sotskov, Yu. N., Leontev, V. K. and Gordeev, E. N., Some concepts of stability analysis in combinatorial optimization, Discrete Appl. Math., 58, pp. 169-190, 1995, https://doi.org/10.1016/0166-218X(93)E0126-J. DOI: https://doi.org/10.1016/0166-218X(93)E0126-J

Sotskov, Yu. N., Tanaev, V. S. and Werner F., Stability radius of an optimal schedule: a survey and recent developments, Industrial Applications of Discrete Optimization, Kluwer, 16, pp. 72-108, 1998, https://doi.org/10.1007/978-1-4757-2876-7_4. DOI: https://doi.org/10.1007/978-1-4757-2876-7_4

Greenberg, H. G., An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization., in: D. Woodruff Editor, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, Kluwer Academic Publisher, Boston, pp. 97-108, 1998. DOI: https://doi.org/10.1007/978-1-4757-2807-1_4

Emelichev, V. A., Girlich, E., Nikulin, Yu. V. and Podkopaev, D. P., Stability and regularization of vector problem of integer linear programming, Optimization, 51, pp. 645-676, 2002, https://doi.org/10.1080/0233193021000030760. DOI: https://doi.org/10.1080/0233193021000030760

Emelichev, V. A. and Leonovich, A. M., A sensitivity measure of the Pareto set in a vector l∞-extreme combinatorial problem, Computer Science Jornal of Moldova, 9, pp. 291-304, 2001.

Emelichev, V. A. and Nikulin, Yu. V., On the stability and quasi-stability of a vector lexicographic quadric boolean programming problem, Rev. Anal. Numér. Théor. Approx., 30, pp. 35-46, 2001.

Emelichev, V. A. and Stepanishina, Yu. V., A quasistability of the vector non-linear trajectorial problem with Pareto principle of optimality, Izv. Vuzov. Matematika, 12, pp. 27-32, 2002.

Emelichev, V. A. and Leonovich, A. M., A quasistability of the vector l∞-extreme combinatorial problem with Pareto principle of optimality, Buletinul Acad. de St. a Republicii Moldova. Matematica, 1, pp. 44-50, 2001.

Podinovsky, V. V. and Nogin, V. D., Pareto Optimal Solutions in Multicriteria Problems, Nauka, Moskow, 1982.

Kolmogorov, A. N. and Fomin, S. V., Elements of Theory of Functions and Function Analysis, Nauka, Moskow, 1972.

Downloads

Published

2003-02-01

How to Cite

Emelichev, V. A., & Leonovich, A. M. (2003). On stability conditions of vector \(l_\infty\)-extreme combinatorial problem with Pareto principle of optimality. Rev. Anal. Numér. Théor. Approx., 32(1), 31–37. https://doi.org/10.33993/jnaat321-732

Issue

Section

Articles