On stability conditions of vector \(l_\infty\)-extreme combinatorial problem with Pareto principle of optimality
DOI:
https://doi.org/10.33993/jnaat321-732Keywords:
vector \(l_\infty\)-extreme trajectorial problem, Pareto set, stabilityAbstract
We consider the multicriteria problem of combinatorial optimization with partial criteria of the kind MINMAX MODUL. The parameters of criteria are subject to "small" independent perturbations. The class of problems for which new Pareto optima do not appear, but some trajectories may lose optimality under those perturbations, is distinguished.Downloads
References
Sergienko, I. V., Kozeratskaya, L. N. and Lebedeva, T. T., Stability Investigation and Parametric Analysis of Discrete Optimization Problem, Naukova Dumka, Kiev, 1995.
Sotskov, Yu. N., Leontev, V. K. and Gordeev, E. N., Some concepts of stability analysis in combinatorial optimization, Discrete Appl. Math., 58, pp. 169-190, 1995, https://doi.org/10.1016/0166-218X(93)E0126-J. DOI: https://doi.org/10.1016/0166-218X(93)E0126-J
Sotskov, Yu. N., Tanaev, V. S. and Werner F., Stability radius of an optimal schedule: a survey and recent developments, Industrial Applications of Discrete Optimization, Kluwer, 16, pp. 72-108, 1998, https://doi.org/10.1007/978-1-4757-2876-7_4. DOI: https://doi.org/10.1007/978-1-4757-2876-7_4
Greenberg, H. G., An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization., in: D. Woodruff Editor, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, Kluwer Academic Publisher, Boston, pp. 97-108, 1998. DOI: https://doi.org/10.1007/978-1-4757-2807-1_4
Emelichev, V. A., Girlich, E., Nikulin, Yu. V. and Podkopaev, D. P., Stability and regularization of vector problem of integer linear programming, Optimization, 51, pp. 645-676, 2002, https://doi.org/10.1080/0233193021000030760. DOI: https://doi.org/10.1080/0233193021000030760
Emelichev, V. A. and Leonovich, A. M., A sensitivity measure of the Pareto set in a vector l∞-extreme combinatorial problem, Computer Science Jornal of Moldova, 9, pp. 291-304, 2001.
Emelichev, V. A. and Nikulin, Yu. V., On the stability and quasi-stability of a vector lexicographic quadric boolean programming problem, Rev. Anal. Numér. Théor. Approx., 30, pp. 35-46, 2001.
Emelichev, V. A. and Stepanishina, Yu. V., A quasistability of the vector non-linear trajectorial problem with Pareto principle of optimality, Izv. Vuzov. Matematika, 12, pp. 27-32, 2002.
Emelichev, V. A. and Leonovich, A. M., A quasistability of the vector l∞-extreme combinatorial problem with Pareto principle of optimality, Buletinul Acad. de St. a Republicii Moldova. Matematica, 1, pp. 44-50, 2001.
Podinovsky, V. V. and Nogin, V. D., Pareto Optimal Solutions in Multicriteria Problems, Nauka, Moskow, 1982.
Kolmogorov, A. N. and Fomin, S. V., Elements of Theory of Functions and Function Analysis, Nauka, Moskow, 1972.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.