The Second Ditzian-Totik modulus revisited: refined estimates for positive linear operators
DOI:
https://doi.org/10.33993/jnaat321-733Keywords:
Bernstein operator, Ditzian-Totik moduli of smoothness, best constants, piecewise linear interpolation, Bernstein-Stancu operator, Gavrea operatorAbstract
Direct theorems for approximation by positive linear operators in terms of the second order Ditzian-Totik modulus of smoothness are proved. Special emphasis is on the magnitude of the absolute constants. New results are obtained for Bernstein operators, for piecewise linear interpolation, for general Bernstein-Stancu operators and for those of Gavrea.Downloads
References
Brass, H., Eine Verallgemeinerung der Bernsteinschen Operatoren, Abh. Math. Sem. Univ. Hamburg, 36, pp. 111-122, 1971. DOI: https://doi.org/10.1007/BF02995913
Brudnyı, Yu. A., On a certain method for approximation of bounded functions given on a segment, in: "Studies Contemporary Problems Constructive Theory of Functions", Proc. Second All-Union Conf. Baku, 1962; ed. by I. I. Ibragimov, Izdat. Akad. Nauk Azerbaidzan. SSR, Baku, pp. 40-45, 1965.
Burkhill, H., Cesàro-Perron almost periodic functions, Proc. London Math. Soc. (Series 3), 2, pp. 150-174, 1952, https://doi.org/10.1112/plms/s3-2.1.150. DOI: https://doi.org/10.1112/plms/s3-2.1.150
Cao, J.-D., On linear approximation methods, Acta Sci. Natur. Univ. Fudan, 9, pp. 43--52, 1964 (in Chinese).
DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Ditzian, Z., A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory, 26, pp. 277-292, 1979, http://www.dx.doi.org/10.1016/0021-9045(79)90065-0 DOI: https://doi.org/10.1016/0021-9045(79)90065-0
Ditzian, Z., On interpolation of L_{p}[a,b] and weighted Sobolev spaces, Pacific J. Math., 90, pp. 307-323, 1980, http://www.dx.doi.org/10.2140/pjm.1980.90.307 DOI: https://doi.org/10.2140/pjm.1980.90.307
Ditzian, Z. and Ivanov, K. G., Strong converse inequalities, J. Anal. Math., 61, pp. 61-111, 1993, http://www.dx.doi.org/10.1007/BF02788839 DOI: https://doi.org/10.1007/BF02788839
Ditzian, Z. and Totik, V., Moduli of Smoothness, Springer, New York, 1987, http://www.dx.doi.org/10.1007/978-1-4612-4778-4 DOI: https://doi.org/10.1007/978-1-4612-4778-4
Ditzian, Z. and Zhou, X.-L., Kantorovich-Bernstein polynomials, Constr. Approx., 6, pp. 421-435, 1980, http://www.dx.doi.org/10.1007/BF01888273 DOI: https://doi.org/10.1007/BF01888273
Dzafarov, A. S., Averaged moduli of continuity and some of their connections with best approximation, Dokl. Akad. Nauk SSSR, 236, no. 2, pp. 288-291, 1977 (in Russian).
Felten, M., Direct and inverse estimates for Bernstein polynomials, Constr. Approx., 14, pp. 459-468, 1998, http://www.dx.doi.org/10.1007/s003659900084 DOI: https://doi.org/10.1007/s003659900084
Gavrea, I., The approximation of the continuous functions by means of some linear positive operators, Resultate Math., 30, pp. 55-66, 1996, http://www.dx.doi.org/10.1007/BF03322180 DOI: https://doi.org/10.1007/BF03322180
Gavrea, I., Gonska, H. and Kacsó, D., Variation on Butzer's problem: characterization of the solutions, Computers Math. Appl., 34, pp. 51-64, 1997, http://www.dx.doi.org/10.1016/S0898-1221(97)00188-0 DOI: https://doi.org/10.1016/S0898-1221(97)00188-0
Gonska, H., The second order modulus again: some (still?) open problems, Schriftenreihe des Fachbereichs Mathematik, Univ. Duisburg, Germany, SM-DU-426, 1998.
Gonska, H. and Kovacheva, R., The second order modulus revisited: remarks, applications, problems, Confer. Sem. Mat. Univ. Bari, 257, pp. 1-32, 1994.
Gonska, H. and Meier, J., A bibliography on approximation of functions by Bernstein-type operators (1955-1982), in: "Approximation Theory IV", Proc. Int. Sympos. College Station 1983, ed. by C. K. Chui et al., Acad. Press, New York, pp. 739-785, 1983.
Gonska, H. and Meier, J., A bibliography on approximation of functions by Bernstein-type operators (Supplement 1986), in: "Approximation Theory V", Proc. Int. Sympos. College Station 1986, ed. by C. K.Chui et al., Acad. Press, New York, pp. 621-654, 1986.
Ivanov, K. G., On Bernstein Polynomials, C. R. Acad. Bulg., 35, pp. 893--896, 1982. DOI: https://doi.org/10.1016/0021-9681(82)90120-5
Ivanov, K. G., A constructive characterization of the best algebraic approximation in Lp[-1,1], in: "Constructive Function Theory '81", Proc. Int. Conf. Varna 1981, ed. by Bl. Sendov et al., Sofia, Publishing House of the Bulgarian Academy of Sciences, pp. 357-367, 1983.
Ivanov, K. G., A characterization of weighted Peetre K-functionals, J. Approx. Theory, 56, pp. 185-211, 1989, https://doi.org/10.1016/0021-9045(89)90109-3. DOI: https://doi.org/10.1016/0021-9045(89)90109-3
Kacsó, D. P., Discrete Jackson-type operators via a Boolean sum approach, J. Comp. Anal. Appl., 3 no. 4, pp. 399-413, https://doi.org/10.1023/A:1012054425159. DOI: https://doi.org/10.1023/A:1012054425159
Knoop, H. B. and Zhou, X.-L., The lower estimate for linear positive operators, Schriftenreihe des Fachbereichs Mathematik, Univ. Duisburg, Germany, SM-DU-201, 1992.
Knoop, H. B. and Zhou, X.-L., The lower estimate for linear positive operators (II), Results Math., 25, pp. 315-330, 1994, https://doi.org/10.1007/BF03323413. DOI: https://doi.org/10.1007/BF03323413
Păltănea, R., L'estimation de l'approximation des fonctions continues par les opérateurs de Brass, Itinerant Seminar of Functional Equations, Approximation and Convexity (Cluj-Napoca), pp. 123-126, 1984, Preprint 84-6, Univ. Babeş-Bolyai, Cluj-Napoca, 1984.
Păltănea, R., L'estimation de l'approximation des derivées d'ordre r par les polynomes de Brass, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), pp. 207--210, 1986, Univ. Babeş-Bolyai, Cluj-Napoca, 1986.
Păltănea, R., A generalization of the operators of H. Brass, Manuscript, 1993.
Păltănea, R., Best constants in estimates with second order moduli of continuity, in: "Approximation Theory", Proc. Int. Dortmund Meeting IDoMAT 95, ed. by M. W. Müller et al., Akademie-Verlag, Berlin, pp. 251-275, 1995.
Păltănea, R., On the degree of approximation by Bernstein operators, in: "RoGer 98", Proc. 3rd Romanian-German Seminar on Approximation Theory, Sibiu 1998, ed. by A. Lupaş et al., Universitatea "Lucian Blaga", Sibiu, pp. 53-56, 1998.
Popoviciu, T., Curs de Analiză Matematică, Partea III-a: Continuitate, Cluj-Napoca: Babeş-Bolyai University, 1974 (in Romanian).
Potapov, M. K., On approximation by Jacobi polynomials, Vestnik Moskov. Univ., Ser. I Mat. Mekh., no. 5, pp. 70-82, 1977 (in Russian).
Stancu, D. D., Approximation of functions by means of some new classes of positive linear operators, in: "Numerische Methoden der Approximationstheorie", Vol. 1, Proc. Conf. Math. Res. Inst. Oberwolfach 1971, ed. by L. Collatz and G. Meinardus, Birkhäuser, Basel, pp. 187-203, 1972. DOI: https://doi.org/10.1007/978-3-0348-5952-3_17
Stancu, D. D., Generalized Bernstein approximating operators, Itinerant Seminar on Functional Equations, Approximation and Convexity, University of Cluj-Napoca, pp. 185-192, 1984.
Stancu, D. D., Probabilistic approach to a class of generalized Bernstein approximating operators, Rev. Anal. Numér. Théor. Approx, 14, pp. 83--89, 1984.
Stancu, D. D., Approximation properties of a class of multiparameter positive linear operators, in: "Approximation and Optimization", Proc. Int. Conf. on Approximation and Optimization (Romania)-ICAOR; ed. by D. D. Stancu et al., Transilvania Press, Cluj-Napoca, vol. 1, pp. 203-218, 1997.
Totik, V., Approximation by Bernstein polynomials, American J. Math., 116, pp. 995-1018, 1994, https://doi.org/10.2307/2375007. DOI: https://doi.org/10.2307/2375007
Zhou, X.-L., Approximation of integrable functions by Baskakov-type operators, Master Thesis, Hangzhou University, 1981 (in Chinese).
Zhou, X.-L., On Bernstein polynomials, Acta Math. Sinica, 28, pp. 848-855, 1985 (in Chinese).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.