Efficiency and generalized concavity for multi-objective set-valued programming
DOI:
https://doi.org/10.33993/jnaat322-752Keywords:
vector set-valued programming, fractional programming, efficiency, proper efficiency, semistrict quasiconcavity, semiexplicit quasiconcavityAbstract
The purpose of this paper is to give sufficient conditions of generalized concavity type for a local (weakly) efficient solution to be a global (weakly) efficient solution for a vector maximization set-valued programming problem. In the particular case of the vector maximization set-valued fractional programming problem, we derive some characterizations properties of efficient and properly efficient solutions based on a parametric procedure associated to the fractional problem.Downloads
References
Bhatia, D. and Mehra, A., Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214, no. 2, pp. 599-612, 1997, https://doi.org/10.1006/jmaa.1997.5599. DOI: https://doi.org/10.1006/jmaa.1997.5599
Chandra, S., Craven, B. D. and Mond, B., Multiobjective fractional programming duality. A Lagrangian approach, Optimization, 22, no. 4, pp. 549-556, 1991, https://doi.org/10.1080/02331939108843699. DOI: https://doi.org/10.1080/02331939108843699
Geoffrion, A. M., Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22, no. 3, pp. 618--630, 1968, https://doi.org/10.1016/0022-247X(68)90201-1. DOI: https://doi.org/10.1016/0022-247X(68)90201-1
Giorgi, G. and Guerraggio, A., Proper efficiency and generalized convexity in nonsmooth vector optimization problems, in "Generalized Convexity and Generalized Monotonicity" Proceedings of the 6th International Symposium on Generalized Convexity/Monotonicity, Samos, September 1999, N. Hadjisavvas, J. E Martinez-Legaz, J-P. Penot (Eds.), pp. 208-217, Lecture Notes in Economics and Mathematical Systems 502, Springer-Verlag, Berlin Heidelberg, 2001. DOI: https://doi.org/10.1007/978-3-642-56645-5_14
Luc, D. T. and Schaible, S., Efficiency and generalized concavity. J. Optim. Theory Appl., 94, no. 1, pp. 147-153, 1997, https://doi.org/10.1023/A:1022663804177. DOI: https://doi.org/10.1023/A:1022663804177
Ruiz-Canales, P. and Rufian-Lizana, A., A characterization of weakly efficient points, Mathematical Programming, 68, pp. 205-212, 1995, https://doi.org/10.1007/BF01585765. DOI: https://doi.org/10.1007/BF01585765
Stancu-Minasian, I. M. and Ţigan, S., Multiobjective mathematical programming with inexact data, R. Slowinski and J. Teghem (eds.), Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, pp. 395-418, Kluwer Academic Publishers, 1990. DOI: https://doi.org/10.1007/978-94-009-2111-5_20
Stancu-Minasian, I. M. and Ţigan, S., On some methods for solving fractional programming problems with inexact data, Studii şi Cercetări Matematice, 45, no. 6, pp. 517-532, 1993.
Stancu-Minasian, I. M. and Ţigan, S., Fractional programming under uncertainty, in "Generalized Convexity" Proceedings of the IV-th International Workshop on Generalized Convexity, Pecs, 1992, S. Komlósi, T. Rapcsák, S. Schaible (eds.), pp. 322-333, Lecture Notes in Economics and Mathematical Systems 405, Springer-Verlag, Berlin, 1994. DOI: https://doi.org/10.1007/978-3-642-46802-5_25
Ţigan, S., Sur le problème de la programmation vectorielle fractionnaire, Rev. Anal. Numér. Théor. Approx., 4, no. 1, pp. 99-103, 1975, http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.