Efficiency and generalized concavity for multi-objective set-valued programming

Authors

  • Ş. Ţigan University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
  • I.M. Stancu-Minasian Romanian Academy, Bucharest, Romania

DOI:

https://doi.org/10.33993/jnaat322-752

Keywords:

vector set-valued programming, fractional programming, efficiency, proper efficiency, semistrict quasiconcavity, semiexplicit quasiconcavity
Abstract views: 208

Abstract

The purpose of this paper is to give sufficient conditions of generalized concavity type for a local (weakly) efficient solution to be a global (weakly) efficient solution for a vector maximization set-valued programming problem. In the particular case of the vector maximization set-valued fractional programming problem, we derive some characterizations properties of efficient and properly efficient solutions based on a parametric procedure associated to the fractional problem.

Downloads

Download data is not yet available.

References

Bhatia, D. and Mehra, A., Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214, no. 2, pp. 599-612, 1997, https://doi.org/10.1006/jmaa.1997.5599. DOI: https://doi.org/10.1006/jmaa.1997.5599

Chandra, S., Craven, B. D. and Mond, B., Multiobjective fractional programming duality. A Lagrangian approach, Optimization, 22, no. 4, pp. 549-556, 1991, https://doi.org/10.1080/02331939108843699. DOI: https://doi.org/10.1080/02331939108843699

Geoffrion, A. M., Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22, no. 3, pp. 618--630, 1968, https://doi.org/10.1016/0022-247X(68)90201-1. DOI: https://doi.org/10.1016/0022-247X(68)90201-1

Giorgi, G. and Guerraggio, A., Proper efficiency and generalized convexity in nonsmooth vector optimization problems, in "Generalized Convexity and Generalized Monotonicity" Proceedings of the 6th International Symposium on Generalized Convexity/Monotonicity, Samos, September 1999, N. Hadjisavvas, J. E Martinez-Legaz, J-P. Penot (Eds.), pp. 208-217, Lecture Notes in Economics and Mathematical Systems 502, Springer-Verlag, Berlin Heidelberg, 2001. DOI: https://doi.org/10.1007/978-3-642-56645-5_14

Luc, D. T. and Schaible, S., Efficiency and generalized concavity. J. Optim. Theory Appl., 94, no. 1, pp. 147-153, 1997, https://doi.org/10.1023/A:1022663804177. DOI: https://doi.org/10.1023/A:1022663804177

Ruiz-Canales, P. and Rufian-Lizana, A., A characterization of weakly efficient points, Mathematical Programming, 68, pp. 205-212, 1995, https://doi.org/10.1007/BF01585765. DOI: https://doi.org/10.1007/BF01585765

Stancu-Minasian, I. M. and Ţigan, S., Multiobjective mathematical programming with inexact data, R. Slowinski and J. Teghem (eds.), Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, pp. 395-418, Kluwer Academic Publishers, 1990. DOI: https://doi.org/10.1007/978-94-009-2111-5_20

Stancu-Minasian, I. M. and Ţigan, S., On some methods for solving fractional programming problems with inexact data, Studii şi Cercetări Matematice, 45, no. 6, pp. 517-532, 1993.

Stancu-Minasian, I. M. and Ţigan, S., Fractional programming under uncertainty, in "Generalized Convexity" Proceedings of the IV-th International Workshop on Generalized Convexity, Pecs, 1992, S. Komlósi, T. Rapcsák, S. Schaible (eds.), pp. 322-333, Lecture Notes in Economics and Mathematical Systems 405, Springer-Verlag, Berlin, 1994. DOI: https://doi.org/10.1007/978-3-642-46802-5_25

Ţigan, S., Sur le problème de la programmation vectorielle fractionnaire, Rev. Anal. Numér. Théor. Approx., 4, no. 1, pp. 99-103, 1975, http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art12

Downloads

Published

2003-08-01

How to Cite

Ţigan, Ş., & Stancu-Minasian, I. (2003). Efficiency and generalized concavity for multi-objective set-valued programming. Rev. Anal. Numér. Théor. Approx., 32(2), 235–242. https://doi.org/10.33993/jnaat322-752

Issue

Section

Articles