On spline approximation for bivariate functions of increasing convex type

Authors

  • Michel Denuit Universit ́e Catholique de Louvain, Belgium
  • Claude Lefèvre Universit ́e Libre de Bruxelles, Bruxelles, Belgium
  • Mhamed Mesfioui Universite du Quebec a Trois-Rivieres, Quebec, Canada

DOI:

https://doi.org/10.33993/jnaat322-743

Keywords:

stochastic orderings, extremal generators, convexity, bivariate continuous increasing convex functions, spline approximation
Abstract views: 236

Abstract

The motivation of the paper is to construct the largest and smallest families of functions that allow us to generate the bivariate continuous stochastic orderings of increasing convex type introduced recently in Denuit et al. (1999). The main step will consist in deriving a spline approximation for bivariate continuous increasing convex functions, which extends to the bivariate case a fundamental result obtained by Popoviciu (1941).

Downloads

Download data is not yet available.

References

Agrawal, R. P., Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker, New York, 1992.

Bojanic, R. and Roulier, J., Approximation of convex functions by convex splines and convexity preserving continuous linear operators, Bulletin d'Analyse Numérique et de la théorie de l'Approximation, 3, pp. 143-150, 1974.

Dadu, A., Sur un théorème de Tiberiu Popoviciu, Mathematica, 10, pp. 149-154, 1981.

Denuit, M., De Vylder, F. E. and Lefèvre, Cl., Extrenal generators and extremal distribution for the continuous s-convex stochastic orderings, Insurance: Mathematics and Economics, 24, pp. 201-217, https://doi.org/10.1016/S0167-6687(98)00053-5. DOI: https://doi.org/10.1016/S0167-6687(98)00053-5

Denuit, M., Lefèvre, Cl. and Mesfioui, M., A class of bivariate stochastic orderings, with applciations in acturial siences, Insurance: Mathematics and Economics, 24, pp. 31-50, 1999, . http://doi.org/10.1016/S0167-6687(98)00036-5. DOI: https://doi.org/10.1016/S0167-6687(98)00036-5

Denuit, M., Lefèvre, Cl. and Shaked, M., The s-convex orders among real random variables, with applications, Mathematical Inequalities and Applications, 1, pp. 585-613, 1998. DOI: https://doi.org/10.7153/mia-01-56

Lorentz, G. G., Bernstein Polynomials, Chelsea Publishing Company, New York, 1986.

Marshall, A. W., Multivariate stochastic orderings and generating cones of functions, in Stochastic Orders and Decision under Risk, K. C. Mosler and M. Scarsini, Eds., IMS Lecture Notes - Monograph Series, 19, pp. 231-247, 1991, 2000. DOI: https://doi.org/10.1214/lnms/1215459859

Mosler, K. C. and Scarsini, M., Stochastic Orders and Applications, a Classified Bibliography, Springer, Berlin, 1993. DOI: https://doi.org/10.1007/978-3-642-49972-2

Müller, A., Stochastic orderings generated by integrals: a unified study, Advances in Applied Probability, 29, pp. 414-428, 1997, https://doi.org/10.2307/1428010. DOI: https://doi.org/10.2307/1428010

Popoviciu, E., Sur certaines allures remarquables, Rev. Anal. Numér. Théor. Approx., 26, nos. 1-2, pp. 197-202, 1997, http://ictp.acad.ro/jnaat/journal/article/view/1997-vol26-nos1-2-art26

Popoviciu, T., Sur quelques propriétés des fonctions d'une ou de deux variables réelles, Mathematica, 8, pp. 1-85, 1934.

Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica, 10, pp. 94-54, 1935.

Popoviciu, T., Notes sur les fonctions convexes d'ordre supérieur (IX), Bulletin Mathématique de la société Roumaine des Sciences, 43, pp. 85-141, 1941.

Shaked, M. and Shanthikumar, J. G., Stochastic Ordres and their Applications, Academic Press, New York, 1994.

Stoyan, D., Comparison Methods for Queues and Other Stochastic Models, Wiley, New York, 1983.

Downloads

Published

2003-08-01

How to Cite

Denuit, M., Lefèvre, C., & Mesfioui, M. (2003). On spline approximation for bivariate functions of increasing convex type. Rev. Anal. Numér. Théor. Approx., 32(2), 145–159. https://doi.org/10.33993/jnaat322-743

Issue

Section

Articles