Return to Article Details An Ostrowski type inequality for double integrals in terms of \(L_p\)-norms and applications in numerical integration

REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 32 (2003) no. 2, pp. 161-169
ictp.acad.ro/jnaat

AN OSTROWSKI TYPE INEQUALITY
FOR DOUBLE INTEGRALS IN TERMS OF L p L p L_(p)L_{p}Lp-NORMS
AND APPLICATIONS IN NUMERICAL INTEGRATION

S. S. DRAGOMIR, N. S. BARNETT and P. CERONE*

Abstract

An inequality of the Ostrowski type for double integrals and applications in Numerical Analysis in connection with cubature formulae are given. MSC 2000. Primary: 26D15; Secondary: 41A55.

Keywords. Ostrowski's inequality, cubature formulae.

1. INTRODUCTION

In 1938, A. Ostrowski proved the following integral inequality [5, p. 468].
Theorem 1. Let f : [ a , b ] R f : [ a , b ] R f:[a,b]rarrRf:[a, b] \rightarrow \mathbb{R}f:[a,b]R be continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] and differentiable on ( a , b ) ( a , b ) (a,b)(a, b)(a,b) whose derivative f : ( a , b ) R f : ( a , b ) R f^('):(a,b)rarrRf^{\prime}:(a, b) \rightarrow \mathbb{R}f:(a,b)R is bounded on ( a , b ) ( a , b ) (a,b)(a, b)(a,b), i.e.,
f := sup t ( a , b ) | f ( t ) | < f := sup t ( a , b ) f ( t ) < ||f^(')||_(oo):=s u p_(t in(a,b))|f^(')(t)| < oo\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\inftyf:=supt(a,b)|f(t)|<
Then we have the inequality
| f ( x ) 1 b a a b f ( t ) d t | [ 1 4 + ( x a + b 2 ) 2 ( b a ) 2 ] ( b a ) f , x [ a , b ] f ( x ) 1 b a a b f ( t ) d t 1 4 + x a + b 2 2 ( b a ) 2 ( b a ) f , x [ a , b ] |f(x)-(1)/(b-a)int_(a)^(b)f(t)dt| <= [(1)/(4)+((x-(a+b)/(2))^(2))/((b-a)^(2))](b-a)||f^(')||_(oo),quad AA x in[a,b]\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty}, \quad \forall x \in[a, b]|f(x)1baabf(t)dt|[14+(xa+b2)2(ba)2](ba)f,x[a,b]
The constant 1 4 1 4 (1)/(4)\frac{1}{4}14 is the best possible.
For some generalizations see the book [5, pp. 468-484] by Mitrinović, Pečarić and Fink.
Some applications of the above results in Numerical Integration and for special means have been given in 3 by S. S. Dragomir and S. Wang.
In [4] Dragomir and Wang established the following Ostrowski type inequality for differentiable mappings whose derivatives belong to L p L p L_(p)L_{p}Lp-spaces.
Theorem 2. Let f : I R R f : I R R f:I subeRrarrRf: I \subseteq \mathbb{R} \rightarrow \mathbb{R}f:IRR be a differentiable mapping on I I I^(@)I^{\circ}I and a , b I a , b I a,b inI^(@)a, b \in I^{\circ}a,bI with a < b a < b a < ba<ba<b. If f L p ( a , b ) , p > 1 , 1 p + 1 q = 1 f L p ( a , b ) , p > 1 , 1 p + 1 q = 1 f^(')inL_(p)(a,b),p > 1,(1)/(p)+(1)/(q)=1f^{\prime} \in L_{p}(a, b), p>1, \frac{1}{p}+\frac{1}{q}=1fLp(a,b),p>1,1p+1q=1, then we have the inequality:
| f ( x ) 1 b a a b f ( t ) d t | 1 b a [ ( x a ) q + 1 + ( b x ) q + 1 q + 1 ] 1 q f p , x [ a , b ] f ( x ) 1 b a a b f ( t ) d t 1 b a ( x a ) q + 1 + ( b x ) q + 1 q + 1 1 q f p , x [ a , b ] |f(x)-(1)/(b-a)int_(a)^(b)f(t)dt| <= (1)/(b-a)[((x-a)^(q+1)+(b-x)^(q+1))/(q+1)]^((1)/(q))||f^(')||_(p),quad AA x in[a,b]\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right| \leq \frac{1}{b-a}\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left\|f^{\prime}\right\|_{p}, \quad \forall x \in[a, b]|f(x)1baabf(t)dt|1ba[(xa)q+1+(bx)q+1q+1]1qfp,x[a,b]
where
f p := ( a b | f ( t ) | p d t ) 1 p f p := a b f ( t ) p d t 1 p ||f^(')||_(p):=(int_(a)^(b)|f^(')(t)|^(p)(d)t)^((1)/(p))\left\|f^{\prime}\right\|_{p}:=\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}fp:=(ab|f(t)|p dt)1p
is the L p ( a , b ) L p ( a , b ) L_(p)(a,b)L_{p}(a, b)Lp(a,b)-norm.
Note that the above inequality can also be obtained from Theorem 1 [5], p. 471] due to A. M. Fink.
For other Ostrowski type inequalities, see the papers [1], [2] and [4].
In 1975, G. N. Milovanović generalized Theorem 1, where f f fff is a function of several variables [5, p. 468].
Theorem 3. Let f : R m R f : R m R f:R^(m)rarrRf: \mathbb{R}^{m} \rightarrow \mathbb{R}f:RmR be a differentiable function defined on D = { ( x 1 , , x m ) : a i x i b i , i = 1 , , m } D = x 1 , , x m : a i x i b i , i = 1 , , m D={(x_(1),dots,x_(m)):a_(i) <= x_(i) <= b_(i),i=1,dots,m}D= \left\{\left(x_{1}, \ldots, x_{m}\right): a_{i} \leq x_{i} \leq b_{i}, i=1, \ldots, m\right\}D={(x1,,xm):aixibi,i=1,,m} and let | f x i | M i , M i > 0 f x i M i , M i > 0 |(del f)/(delx_(i))| <= M_(i),M_(i) > 0\left|\frac{\partial f}{\partial x_{i}}\right| \leq M_{i}, M_{i}>0|fxi|Mi,Mi>0, i = 1 , , m i = 1 , , m i=1,dots,mi=1, \ldots, mi=1,,m, in D D DDD. Furthermore, let function x p ( x ) x p ( x ) x longmapsto p(x)x \longmapsto p(x)xp(x) be integrable and p ( x ) > 0 p ( x ) > 0 p(x) > 0p(x)>0p(x)>0, for every x D x D x in Dx \in DxD. Then for every x D x D x in Dx \in DxD, we have the inequality:
| f ( x ) D p ( y ) f ( y ) d y D p ( y ) d y | i = 1 m M i D p ( y ) | x i y i | d y D p ( y ) d y f ( x ) D p ( y ) f ( y ) d y D p ( y ) d y i = 1 m M i D p ( y ) x i y i d y D p ( y ) d y |f(x)-(int_(D)p(y)f(y)dy)/(int_(D)p(y)dy)| <= (sum_(i=1)^(m)M_(i)int_(D)p(y)|x_(i)-y_(i)|dy)/(int_(D)p(y)dy)\left|f(x)-\frac{\int_{D} p(y) f(y) \mathrm{d} y}{\int_{D} p(y) \mathrm{d} y}\right| \leq \frac{\sum_{i=1}^{m} M_{i} \int_{D} p(y)\left|x_{i}-y_{i}\right| \mathrm{d} y}{\int_{D} p(y) \mathrm{d} y}|f(x)Dp(y)f(y)dyDp(y)dy|i=1mMiDp(y)|xiyi|dyDp(y)dy
In the present paper we point out an Ostrowski type inequality for double integrals in terms of L p L p L_(p)L_{p}Lp-norms and apply it in Numerical Integration obtaining a general cubature formula.

2. THE RESULTS

The following inequality of Ostrowski's type for mappings of two variables holds:
Theorem 4. Let f : [ a , b ] × [ c , d ] R f : [ a , b ] × [ c , d ] R f:[a,b]xx[c,d]rarrRf:[a, b] \times[c, d] \rightarrow \mathbb{R}f:[a,b]×[c,d]R be a continuous mapping on [ a , b ] × [ c , d ] , f x , y = 2 f x y [ a , b ] × [ c , d ] , f x , y = 2 f x y [a,b]xx[c,d],f_(x,y)^('')=(del^(2)f)/(del x del y)[a, b] \times [c, d], f_{x, y}^{\prime \prime}=\frac{\partial^{2} f}{\partial x \partial y}[a,b]×[c,d],fx,y=2fxy exists on ( a , b ) × ( c , d ) ( a , b ) × ( c , d ) (a,b)xx(c,d)(a, b) \times(c, d)(a,b)×(c,d) and is in L p ( ( a , b ) × ( c , d ) ) L p ( ( a , b ) × ( c , d ) ) L_(p)((a,b)xx(c,d))L_{p}((a, b) \times(c, d))Lp((a,b)×(c,d)), i.e.,
f s , t p := ( a b c d | 2 f ( x , y ) x y | p d x d y ) 1 p < , p > 1 f s , t p := a b c d 2 f ( x , y ) x y p d x d y 1 p < , p > 1 ||f_(s,t)^('')||_(p):=(int_(a)^(b)int_(c)^(d)|(del^(2)f(x,y))/(del x del y)|^(p)(d)x(d)y)^((1)/(p)) < oo,quad p > 1\left\|f_{s, t}^{\prime \prime}\right\|_{p}:=\left(\int_{a}^{b} \int_{c}^{d}\left|\frac{\partial^{2} f(x, y)}{\partial x \partial y}\right|^{p} \mathrm{~d} x \mathrm{~d} y\right)^{\frac{1}{p}}<\infty, \quad p>1fs,tp:=(abcd|2f(x,y)xy|p dx dy)1p<,p>1
then we have the inequality:
(1) a b c d f ( s , t ) d s d t [ ( b a ) c d f ( x , t ) d t + ( d c ) a b f ( s , y ) d s ( d c ) ( b a ) f ( x , y ) ] ∣≤ (1) a b c d f ( s , t ) d s d t ( b a ) c d f ( x , t ) d t + ( d c ) a b f ( s , y ) d s ( d c ) ( b a ) f ( x , y ) ] ∣≤ {:[(1)∣int_(a)^(b)int_(c)^(d)f(s","t)dsdt-[(b-a)int_(c)^(d)f(x,t)dt+(d-c)int_(a)^(b)f(s,y)ds:}],[quad-(d-c)(b-a)f(x","y)]∣≤]:}\begin{align*} & \mid \int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t-\left[(b-a) \int_{c}^{d} f(x, t) \mathrm{d} t+(d-c) \int_{a}^{b} f(s, y) \mathrm{d} s\right. \tag{1}\\ & \quad-(d-c)(b-a) f(x, y)] \mid \leq \end{align*}(1)abcdf(s,t)ds dt[(ba)cdf(x,t)dt+(dc)abf(s,y)ds(dc)(ba)f(x,y)]∣≤
[ ( x a ) q + 1 + ( b x ) q + 1 q + 1 ] 1 q [ ( y c ) q + 1 + ( d y ) q + 1 q + 1 ] 1 q f s , t p ( x a ) q + 1 + ( b x ) q + 1 q + 1 1 q ( y c ) q + 1 + ( d y ) q + 1 q + 1 1 q f s , t p <= [((x-a)^(q+1)+(b-x)^(q+1))/(q+1)]^((1)/(q))[((y-c)^(q+1)+(d-y)^(q+1))/(q+1)]^((1)/(q))||f_(s,t)^('')||_(p)\leq\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left[\frac{(y-c)^{q+1}+(d-y)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left\|f_{s, t}^{\prime \prime}\right\|_{p}[(xa)q+1+(bx)q+1q+1]1q[(yc)q+1+(dy)q+1q+1]1qfs,tp
for all ( x , y ) [ a , b ] × [ c , d ] ( x , y ) [ a , b ] × [ c , d ] (x,y)in[a,b]xx[c,d](x, y) \in[a, b] \times[c, d](x,y)[a,b]×[c,d], where 1 p + 1 q = 1 , p > 1 1 p + 1 q = 1 , p > 1 (1)/(p)+(1)/(q)=1,p > 1\frac{1}{p}+\frac{1}{q}=1, p>11p+1q=1,p>1.
Proof. Integrating by parts successively, we have the equality:
(2) a x c y ( s a ) ( t c ) f s , t ( s , t ) d t d s = = ( y c ) ( x a ) f ( x , y ) ( y c ) a x f ( s , y ) d s ( x a ) c y f ( x , t ) d t + a x c y f ( s , t ) d s d t (2) a x c y ( s a ) ( t c ) f s , t ( s , t ) d t d s = = ( y c ) ( x a ) f ( x , y ) ( y c ) a x f ( s , y ) d s ( x a ) c y f ( x , t ) d t + a x c y f ( s , t ) d s d t {:[(2)int_(a)^(x)int_(c)^(y)(s-a)(t-c)f_(s,t)^('')(s","t)dtds=],[=(y-c)(x-a)f(x","y)-(y-c)int_(a)^(x)f(s","y)ds-(x-a)int_(c)^(y)f(x","t)dt],[quad+int_(a)^(x)int_(c)^(y)f(s","t)dsdt]:}\begin{align*} & \int_{a}^{x} \int_{c}^{y}(s-a)(t-c) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} t \mathrm{~d} s= \tag{2}\\ & =(y-c)(x-a) f(x, y)-(y-c) \int_{a}^{x} f(s, y) \mathrm{d} s-(x-a) \int_{c}^{y} f(x, t) \mathrm{d} t \\ & \quad+\int_{a}^{x} \int_{c}^{y} f(s, t) \mathrm{d} s \mathrm{~d} t \end{align*}(2)axcy(sa)(tc)fs,t(s,t)dt ds==(yc)(xa)f(x,y)(yc)axf(s,y)ds(xa)cyf(x,t)dt+axcyf(s,t)ds dt
By similar computations, we have
(3) a x y d ( s a ) ( t d ) f s , t ( s , t ) d s d t = ( x a ) ( d y ) f ( x , y ) ( d y ) a x f ( s , y ) d s ( x a ) y d f ( x , t ) d t + a x c y f ( s , t ) d s d t (3) a x y d ( s a ) ( t d ) f s , t ( s , t ) d s d t = ( x a ) ( d y ) f ( x , y ) ( d y ) a x f ( s , y ) d s ( x a ) y d f ( x , t ) d t + a x c y f ( s , t ) d s d t {:[(3)int_(a)^(x)int_(y)^(d)(s-a)(t-d)f_(s,t)^('')(s","t)dsdt],[=(x-a)(d-y)f(x","y)-(d-y)int_(a)^(x)f(s","y)ds],[quad-(x-a)int_(y)^(d)f(x","t)dt+int_(a)^(x)int_(c)^(y)f(s","t)dsdt]:}\begin{align*} & \int_{a}^{x} \int_{y}^{d}(s-a)(t-d) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} s \mathrm{~d} t \tag{3}\\ & =(x-a)(d-y) f(x, y)-(d-y) \int_{a}^{x} f(s, y) \mathrm{d} s \\ & \quad-(x-a) \int_{y}^{d} f(x, t) \mathrm{d} t+\int_{a}^{x} \int_{c}^{y} f(s, t) \mathrm{d} s \mathrm{~d} t \end{align*}(3)axyd(sa)(td)fs,t(s,t)ds dt=(xa)(dy)f(x,y)(dy)axf(s,y)ds(xa)ydf(x,t)dt+axcyf(s,t)ds dt
Now,
(4) x b y d ( s b ) ( t d ) f s , t ( s , t ) d s d t = ( d y ) ( b x ) f ( x , y ) ( d y ) x b f ( s , y ) d s ( b x ) y d f ( x , t ) d t + x b y d f ( s , t ) d s d t (4) x b y d ( s b ) ( t d ) f s , t ( s , t ) d s d t = ( d y ) ( b x ) f ( x , y ) ( d y ) x b f ( s , y ) d s ( b x ) y d f ( x , t ) d t + x b y d f ( s , t ) d s d t {:[(4)int_(x)^(b)int_(y)^(d)(s-b)(t-d)f_(s,t)^('')(s","t)dsdt],[=(d-y)(b-x)f(x","y)-(d-y)int_(x)^(b)f(s","y)ds],[quad-(b-x)int_(y)^(d)f(x","t)dt+int_(x)^(b)int_(y)^(d)f(s","t)dsdt]:}\begin{align*} & \int_{x}^{b} \int_{y}^{d}(s-b)(t-d) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} s \mathrm{~d} t \tag{4}\\ & =(d-y)(b-x) f(x, y)-(d-y) \int_{x}^{b} f(s, y) \mathrm{d} s \\ & \quad-(b-x) \int_{y}^{d} f(x, t) \mathrm{d} t+\int_{x}^{b} \int_{y}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t \end{align*}(4)xbyd(sb)(td)fs,t(s,t)ds dt=(dy)(bx)f(x,y)(dy)xbf(s,y)ds(bx)ydf(x,t)dt+xbydf(s,t)ds dt
and finally
(5) x b c y ( s b ) ( t c ) f s , t ( s , t ) d s d t = ( y c ) ( b x ) f ( x , y ) ( y c ) x b f ( s , y ) d s ( b x ) c y f ( x , t ) d t + x b c y f ( s , t ) d s d t (5) x b c y ( s b ) ( t c ) f s , t ( s , t ) d s d t = ( y c ) ( b x ) f ( x , y ) ( y c ) x b f ( s , y ) d s ( b x ) c y f ( x , t ) d t + x b c y f ( s , t ) d s d t {:[(5)int_(x)^(b)int_(c)^(y)(s-b)(t-c)f_(s,t)^('')(s","t)dsdt],[=(y-c)(b-x)f(x","y)-(y-c)int_(x)^(b)f(s","y)ds],[quad-(b-x)int_(c)^(y)f(x","t)dt+int_(x)^(b)int_(c)^(y)f(s","t)dsdt]:}\begin{align*} & \int_{x}^{b} \int_{c}^{y}(s-b)(t-c) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} s \mathrm{~d} t \tag{5}\\ & =(y-c)(b-x) f(x, y)-(y-c) \int_{x}^{b} f(s, y) \mathrm{d} s \\ & \quad-(b-x) \int_{c}^{y} f(x, t) \mathrm{d} t+\int_{x}^{b} \int_{c}^{y} f(s, t) \mathrm{d} s \mathrm{~d} t \end{align*}(5)xbcy(sb)(tc)fs,t(s,t)ds dt=(yc)(bx)f(x,y)(yc)xbf(s,y)ds(bx)cyf(x,t)dt+xbcyf(s,t)ds dt
If we add the equalities (2) - (5) we get, in the right hand side:
[ ( y c ) ( x a ) + ( x a ) ( d y ) + ( d y ) ( b x ) + ( y c ) ( b x ) ] f ( x , y ) [ ( y c ) ( x a ) + ( x a ) ( d y ) + ( d y ) ( b x ) + ( y c ) ( b x ) ] f ( x , y ) [(y-c)(x-a)+(x-a)(d-y)+(d-y)(b-x)+(y-c)(b-x)]f(x,y)-[(y-c)(x-a)+(x-a)(d-y)+(d-y)(b-x)+(y-c)(b-x)] f(x, y)-[(yc)(xa)+(xa)(dy)+(dy)(bx)+(yc)(bx)]f(x,y)
( d c ) a x f ( s , y ) d s ( d c ) x b f ( s , y ) d s ( b a ) c y f ( x , t ) d t ( b a ) y d f ( x , t ) d t + a x c y f ( s , t ) d s d t + a x y d f ( s , t ) d s d t + x b y d f ( s , t ) d s d t + x b c y f ( s , t ) d s d t = ( d c ) ( b a ) f ( x , y ) ( d c ) a b f ( s , y ) d s ( b a ) c b f ( x , t ) d t + a b c d f ( s , t ) d s d t ( d c ) a x f ( s , y ) d s ( d c ) x b f ( s , y ) d s ( b a ) c y f ( x , t ) d t ( b a ) y d f ( x , t ) d t + a x c y f ( s , t ) d s d t + a x y d f ( s , t ) d s d t + x b y d f ( s , t ) d s d t + x b c y f ( s , t ) d s d t = ( d c ) ( b a ) f ( x , y ) ( d c ) a b f ( s , y ) d s ( b a ) c b f ( x , t ) d t + a b c d f ( s , t ) d s d t {:[-(d-c)int_(a)^(x)f(s","y)ds-(d-c)int_(x)^(b)f(s","y)ds-(b-a)int_(c)^(y)f(x","t)dt],[-(b-a)int_(y)^(d)f(x","t)dt+int_(a)^(x)int_(c)^(y)f(s","t)dsdt+int_(a)^(x)int_(y)^(d)f(s","t)dsdt],[+int_(x)^(b)int_(y)^(d)f(s","t)dsdt+int_(x)^(b)int_(c)^(y)f(s","t)dsdt],[=(d-c)(b-a)f(x","y)-(d-c)int_(a)^(b)f(s","y)ds-(b-a)int_(c)^(b)f(x","t)dt],[+int_(a)^(b)int_(c)^(d)f(s","t)dsdt]:}\begin{aligned} & -(d-c) \int_{a}^{x} f(s, y) \mathrm{d} s-(d-c) \int_{x}^{b} f(s, y) \mathrm{d} s-(b-a) \int_{c}^{y} f(x, t) \mathrm{d} t \\ & -(b-a) \int_{y}^{d} f(x, t) \mathrm{d} t+\int_{a}^{x} \int_{c}^{y} f(s, t) \mathrm{d} s \mathrm{~d} t+\int_{a}^{x} \int_{y}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t \\ & +\int_{x}^{b} \int_{y}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t+\int_{x}^{b} \int_{c}^{y} f(s, t) \mathrm{d} s \mathrm{~d} t \\ = & (d-c)(b-a) f(x, y)-(d-c) \int_{a}^{b} f(s, y) \mathrm{d} s-(b-a) \int_{c}^{b} f(x, t) \mathrm{d} t \\ & +\int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t \end{aligned}(dc)axf(s,y)ds(dc)xbf(s,y)ds(ba)cyf(x,t)dt(ba)ydf(x,t)dt+axcyf(s,t)ds dt+axydf(s,t)ds dt+xbydf(s,t)ds dt+xbcyf(s,t)ds dt=(dc)(ba)f(x,y)(dc)abf(s,y)ds(ba)cbf(x,t)dt+abcdf(s,t)ds dt
For the first part, let us define the kernels: p : [ a , b ] 2 R , q : [ c , d ] 2 R p : [ a , b ] 2 R , q : [ c , d ] 2 R p:[a,b]^(2)rarrR,q:[c,d]^(2)rarrRp:[a, b]^{2} \rightarrow \mathbb{R}, q:[c, d]^{2} \rightarrow \mathbb{R}p:[a,b]2R,q:[c,d]2R given by:
p ( x , s ) := { s a , if s [ a , x ] s b , if s ( x , b ] p ( x , s ) := s a ,       if  s [ a , x ] s b ,       if  s ( x , b ] p(x,s):={[s-a","," if "s in[a","x]],[s-b","," if "s in(x","b]]:}p(x, s):= \begin{cases}s-a, & \text { if } s \in[a, x] \\ s-b, & \text { if } s \in(x, b]\end{cases}p(x,s):={sa, if s[a,x]sb, if s(x,b]
and
q ( y , t ) := { t c , if t [ c , y ] t d , if t ( y , d ] q ( y , t ) := t c ,       if  t [ c , y ] t d ,       if  t ( y , d ] q(y,t):={[t-c","," if "t in[c","y]],[t-d","," if "t in(y","d]]:}q(y, t):= \begin{cases}t-c, & \text { if } t \in[c, y] \\ t-d, & \text { if } t \in(y, d]\end{cases}q(y,t):={tc, if t[c,y]td, if t(y,d]
Now, we deduce that the left part can be represented as:
a b c d p ( x , s ) q ( y , t ) f s , t ( s , t ) d s d t a b c d p ( x , s ) q ( y , t ) f s , t ( s , t ) d s d t int_(a)^(b)int_(c)^(d)p(x,s)q(y,t)f_(s,t)^('')(s,t)dsdt\int_{a}^{b} \int_{c}^{d} p(x, s) q(y, t) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} s \mathrm{~d} tabcdp(x,s)q(y,t)fs,t(s,t)ds dt
Consequently, we get the identity
(6) a b c d p ( x , s ) q ( y , t ) f s , t ( s , t ) d s d t = = ( d c ) ( b a ) f ( x , y ) ( d c ) a b f ( s , y ) d s ( b a ) c d f ( x , t ) d t + a b c d f ( s , t ) d s d t (6) a b c d p ( x , s ) q ( y , t ) f s , t ( s , t ) d s d t = = ( d c ) ( b a ) f ( x , y ) ( d c ) a b f ( s , y ) d s ( b a ) c d f ( x , t ) d t + a b c d f ( s , t ) d s d t {:[(6)int_(a)^(b)int_(c)^(d)p(x","s)q(y","t)f_(s,t)^('')(s","t)dsdt=],[=(d-c)(b-a)f(x","y)-(d-c)int_(a)^(b)f(s","y)ds],[quad-(b-a)int_(c)^(d)f(x","t)dt+int_(a)^(b)int_(c)^(d)f(s","t)dsdt]:}\begin{align*} & \int_{a}^{b} \int_{c}^{d} p(x, s) q(y, t) f_{s, t}^{\prime \prime}(s, t) \mathrm{d} s \mathrm{~d} t= \tag{6}\\ & =(d-c)(b-a) f(x, y)-(d-c) \int_{a}^{b} f(s, y) \mathrm{d} s \\ & \quad-(b-a) \int_{c}^{d} f(x, t) \mathrm{d} t+\int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t \end{align*}(6)abcdp(x,s)q(y,t)fs,t(s,t)ds dt==(dc)(ba)f(x,y)(dc)abf(s,y)ds(ba)cdf(x,t)dt+abcdf(s,t)ds dt
for all ( x , y ) [ a , b ] × [ c , d ] ( x , y ) [ a , b ] × [ c , d ] (x,y)in[a,b]xx[c,d](x, y) \in[a, b] \times[c, d](x,y)[a,b]×[c,d].
Now, using the identity (6), we get
a b c d f ( s , t ) d s d t [ ( b a ) c d f ( x , t ) d t + ( d c ) a b f ( s , y ) d s ( d c ) ( b a ) f ( x , y ) ] ∣≤ a b c d | p ( x , s ) q ( y , t ) | | f s , t ( s , t ) | d s d t a b c d f ( s , t ) d s d t ( b a ) c d f ( x , t ) d t + ( d c ) a b f ( s , y ) d s ( d c ) ( b a ) f ( x , y ) ] ∣≤ a b c d | p ( x , s ) q ( y , t ) | f s , t ( s , t ) d s d t {:[∣int_(a)^(b)int_(c)^(d)f(s","t)dsdt-[(b-a)int_(c)^(d)f(x,t)dt+(d-c)int_(a)^(b)f(s,y)ds:}],[quad-(d-c)(b-a)f(x","y)]∣≤],[ <= int_(a)^(b)int_(c)^(d)|p(x","s)q(y","t)|*|f_(s,t)^('')(s,t)|dsdt]:}\begin{gathered} \mid \int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t-\left[(b-a) \int_{c}^{d} f(x, t) \mathrm{d} t+(d-c) \int_{a}^{b} f(s, y) \mathrm{d} s\right. \\ \quad-(d-c)(b-a) f(x, y)] \mid \leq \\ \leq \int_{a}^{b} \int_{c}^{d}|p(x, s) q(y, t)| \cdot\left|f_{s, t}^{\prime \prime}(s, t)\right| \mathrm{d} s \mathrm{~d} t \end{gathered}abcdf(s,t)ds dt[(ba)cdf(x,t)dt+(dc)abf(s,y)ds(dc)(ba)f(x,y)]∣≤abcd|p(x,s)q(y,t)||fs,t(s,t)|ds dt
Using Hölder's integral inequality for double integrals, we get
a b c d | p ( x , s ) q ( y , t ) | | f s , t ( s , t ) | d s d t ( a b c d | p ( x , s ) q ( y , t ) | q d s d t ) 1 q ( a b c d | f s , t ( s , t ) | p d s d t ) 1 p = ( a b | p ( x , s ) | q d s ) 1 q ( c d | q ( y , t ) | q d t ) 1 q f s , t p = [ ( x a ) q + 1 + ( b x ) q + 1 q + 1 ] 1 q [ ( y c ) q + 1 + ( d y ) q + 1 q + 1 ] 1 q f s , t p a b c d | p ( x , s ) q ( y , t ) | f s , t ( s , t ) d s d t a b c d | p ( x , s ) q ( y , t ) | q d s d t 1 q a b c d f s , t ( s , t ) p d s d t 1 p = a b | p ( x , s ) | q d s 1 q c d | q ( y , t ) | q d t 1 q f s , t p = ( x a ) q + 1 + ( b x ) q + 1 q + 1 1 q ( y c ) q + 1 + ( d y ) q + 1 q + 1 1 q f s , t p {:[int_(a)^(b)int_(c)^(d)|p(x","s)q(y","t)||f_(s,t)^('')(s,t)|dsdt <= ],[ <= (int_(a)^(b)int_(c)^(d)|p(x,s)q(y,t)|^(q)(d)s(d)t)^((1)/(q))(int_(a)^(b)int_(c)^(d)|f_(s,t)^('')(s,t)|^(p)(d)s(d)t)^((1)/(p))],[=(int_(a)^(b)|p(x,s)|^(q)(d)s)^((1)/(q))(int_(c)^(d)|q(y,t)|^(q)(d)t)^((1)/(q))||f_(s,t)^('')||_(p)],[=[((x-a)^(q+1)+(b-x)^(q+1))/(q+1)]^((1)/(q))[((y-c)^(q+1)+(d-y)^(q+1))/(q+1)]^((1)/(q))||f_(s,t)^('')||_(p)]:}\begin{aligned} & \int_{a}^{b} \int_{c}^{d}|p(x, s) q(y, t)|\left|f_{s, t}^{\prime \prime}(s, t)\right| \mathrm{d} s \mathrm{~d} t \leq \\ & \leq\left(\int_{a}^{b} \int_{c}^{d}|p(x, s) q(y, t)|^{q} \mathrm{~d} s \mathrm{~d} t\right)^{\frac{1}{q}}\left(\int_{a}^{b} \int_{c}^{d}\left|f_{s, t}^{\prime \prime}(s, t)\right|^{p} \mathrm{~d} s \mathrm{~d} t\right)^{\frac{1}{p}} \\ & =\left(\int_{a}^{b}|p(x, s)|^{q} \mathrm{~d} s\right)^{\frac{1}{q}}\left(\int_{c}^{d}|q(y, t)|^{q} \mathrm{~d} t\right)^{\frac{1}{q}}\left\|f_{s, t}^{\prime \prime}\right\|_{p} \\ & =\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left[\frac{(y-c)^{q+1}+(d-y)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left\|f_{s, t}^{\prime \prime}\right\|_{p} \end{aligned}abcd|p(x,s)q(y,t)||fs,t(s,t)|ds dt(abcd|p(x,s)q(y,t)|q ds dt)1q(abcd|fs,t(s,t)|p ds dt)1p=(ab|p(x,s)|q ds)1q(cd|q(y,t)|q dt)1qfs,tp=[(xa)q+1+(bx)q+1q+1]1q[(yc)q+1+(dy)q+1q+1]1qfs,tp
and the theorem is proved.
Corollary 5. Under the above assumptions, we have the inequality:
(7) | a b c d f ( s , t ) d s d t [ ( b a ) c d f ( a + b 2 , t ) d t + ( d c ) a b f ( s , c + d 2 ) d s ( d c ) ( b a ) f ( a + b 2 , c + d 2 ) ] ∣≤ ( b a ) 1 + 1 q ( d c ) 1 + 1 q 4 ( q + 1 ) 2 q f s , t p (7) a b c d f ( s , t ) d s d t ( b a ) c d f a + b 2 , t d t + ( d c ) a b f s , c + d 2 d s ( d c ) ( b a ) f a + b 2 , c + d 2 ∣≤ ( b a ) 1 + 1 q ( d c ) 1 + 1 q 4 ( q + 1 ) 2 q f s , t p {:[(7)|int_(a)^(b)int_(c)^(d)f(s,t)ds(d)t-[(b-a)int_(c)^(d)f((a+b)/(2),t)dt:}],[{:+(d-c)int_(a)^(b)f(s,(c+d)/(2))ds-(d-c)(b-a)f((a+b)/(2),(c+d)/(2))]∣≤],[ <= ((b-a)^(1+(1)/(q))(d-c)^(1+(1)/(q)))/(4(q+1)^((2)/(q)))||f_(s,t)^('')||_(p)]:}\begin{align*} & \left\lvert\, \int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t-\left[(b-a) \int_{c}^{d} f\left(\frac{a+b}{2}, t\right) \mathrm{d} t\right.\right. \tag{7}\\ & \left.+(d-c) \int_{a}^{b} f\left(s, \frac{c+d}{2}\right) \mathrm{d} s-(d-c)(b-a) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right] \mid \leq \\ & \leq \frac{(b-a)^{1+\frac{1}{q}}(d-c)^{1+\frac{1}{q}}}{4(q+1)^{\frac{2}{q}}}\left\|f_{s, t}^{\prime \prime}\right\|_{p} \end{align*}(7)|abcdf(s,t)ds dt[(ba)cdf(a+b2,t)dt+(dc)abf(s,c+d2)ds(dc)(ba)f(a+b2,c+d2)]∣≤(ba)1+1q(dc)1+1q4(q+1)2qfs,tp
Remark 1. Consider the mapping g : [ α , β ] R , g ( t ) = ( t α ) m + ( β t ) m g : [ α , β ] R , g ( t ) = ( t α ) m + ( β t ) m g:[alpha,beta]rarrR,g(t)=(t-alpha)^(m)+(beta-t)^(m)g:[\alpha, \beta] \rightarrow \mathbb{R}, g(t)=(t-\alpha)^{m}+(\beta-t)^{m}g:[α,β]R,g(t)=(tα)m+(βt)m, m 1 m 1 m >= 1m \geq 1m1. Taking into account the fact that one has the properties
inf t [ α , β ] g ( t ) = g ( α + β 2 ) = ( β α ) m 2 m 1 inf t [ α , β ] g ( t ) = g α + β 2 = ( β α ) m 2 m 1 i n f_(t in[alpha,beta])g(t)=g((alpha+beta)/(2))=((beta-alpha)^(m))/(2^(m-1))\inf _{t \in[\alpha, \beta]} g(t)=g\left(\frac{\alpha+\beta}{2}\right)=\frac{(\beta-\alpha)^{m}}{2^{m-1}}inft[α,β]g(t)=g(α+β2)=(βα)m2m1
and
sup t [ α , β ] g ( t ) = g ( α ) = g ( β ) = ( β α ) m sup t [ α , β ] g ( t ) = g ( α ) = g ( β ) = ( β α ) m s u p_(t in[alpha,beta])g(t)=g(alpha)=g(beta)=(beta-alpha)^(m)\sup _{t \in[\alpha, \beta]} g(t)=g(\alpha)=g(\beta)=(\beta-\alpha)^{m}supt[α,β]g(t)=g(α)=g(β)=(βα)m
then, the above inequality (7) is the best that can be obtained from (1).
Remark 2. Now, if we assume that f ( s , t ) = h ( s ) h ( t ) , h : [ a , b ] R f ( s , t ) = h ( s ) h ( t ) , h : [ a , b ] R f(s,t)=h(s)h(t),h:[a,b]rarrRf(s, t)=h(s) h(t), h:[a, b] \rightarrow \mathbb{R}f(s,t)=h(s)h(t),h:[a,b]R is continuous on [ a , b ] [ a , b ] [a,b][a, b][a,b] and suppose that h p < h p < ||h^(')||_(p) < oo\left\|h^{\prime}\right\|_{p}<\inftyhp<, then from (1) we get, for x = y x = y x=yx=yx=y,
a b h ( s ) d s a b h ( s ) d s h ( x ) ( b a ) a b h ( s ) d s h ( x ) ( b a ) a b h ( s ) d s + ( b a ) 2 h 2 ( x ) ∣≤ [ ( x a ) q + 1 + ( b x ) q + 1 q + 1 ] 2 q h p 2 a b h ( s ) d s a b h ( s ) d s h ( x ) ( b a ) a b h ( s ) d s h ( x ) ( b a ) a b h ( s ) d s + ( b a ) 2 h 2 ( x ) ∣≤ ( x a ) q + 1 + ( b x ) q + 1 q + 1 2 q h p 2 {:[∣int_(a)^(b)h(s)dsint_(a)^(b)h(s)ds-h(x)(b-a)int_(a)^(b)h(s)ds],[-h(x)(b-a)int_(a)^(b)h(s)ds+(b-a)^(2)h^(2)(x)∣≤],[ <= [((x-a)^(q+1)+(b-x)^(q+1))/(q+1)]^((2)/(q))||h^(')||_(p)^(2)]:}\begin{gathered} \mid \int_{a}^{b} h(s) \mathrm{d} s \int_{a}^{b} h(s) \mathrm{d} s-h(x)(b-a) \int_{a}^{b} h(s) \mathrm{d} s \\ -h(x)(b-a) \int_{a}^{b} h(s) \mathrm{d} s+(b-a)^{2} h^{2}(x) \mid \leq \\ \leq\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{2}{q}}\left\|h^{\prime}\right\|_{p}^{2} \end{gathered}abh(s)dsabh(s)dsh(x)(ba)abh(s)dsh(x)(ba)abh(s)ds+(ba)2h2(x)∣≤[(xa)q+1+(bx)q+1q+1]2qhp2
i.e.,
[ a b h ( s ) d s h ( x ) ( b a ) ] 2 [ ( x a ) q + 1 + ( b x ) q + 1 q + 1 ] 2 q h p 2 a b h ( s ) d s h ( x ) ( b a ) 2 ( x a ) q + 1 + ( b x ) q + 1 q + 1 2 q h p 2 [int_(a)^(b)h(s)ds-h(x)(b-a)]^(2) <= [((x-a)^(q+1)+(b-x)^(q+1))/(q+1)]^((2)/(q))||h^(')||_(p)^(2)\left[\int_{a}^{b} h(s) \mathrm{d} s-h(x)(b-a)\right]^{2} \leq\left[\frac{(x-a)^{q+1}+(b-x)^{q+1}}{q+1}\right]^{\frac{2}{q}}\left\|h^{\prime}\right\|_{p}^{2}[abh(s)dsh(x)(ba)]2[(xa)q+1+(bx)q+1q+1]2qhp2
which is clearly equivalent to Ostrowski's inequality. Consequently (1) can be also regarded as a generalization for double integrals of the result embodied in Theorem 2.

3. APPLICATIONS FOR CUBATURE FORMULAE

Let us consider the arbitrary divisions I n : a = x 0 < x 1 < < x n 1 < x n = b , J m : c = y 0 < y 1 < < y m 1 < y m = b I n : a = x 0 < x 1 < < x n 1 < x n = b , J m : c = y 0 < y 1 < < y m 1 < y m = b I_(n):a=x_(0) < x_(1) < dots < x_(n-1) < x_(n)=b,J_(m):c=y_(0) < y_(1) < dots < y_(m-1) < y_(m)=bI_{n}: a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}= b, J_{m}: c=y_{0}<y_{1}<\ldots<y_{m-1}<y_{m}=bIn:a=x0<x1<<xn1<xn=b,Jm:c=y0<y1<<ym1<ym=b and ξ i [ x i , x i + 1 ] , i = 0 , , n 1 ξ i x i , x i + 1 , i = 0 , , n 1 xi_(i)in[x_(i),x_(i+1)],i=0,dots,n-1\xi_{i} \in\left[x_{i}, x_{i+1}\right], i=0, \ldots, n-1ξi[xi,xi+1],i=0,,n1, η j [ y j , y j + 1 ] , j = 0 , , m 1 η j y j , y j + 1 , j = 0 , , m 1 eta_(j)in[y_(j),y_(j+1)],j=0,dots,m-1\eta_{j} \in\left[y_{j}, y_{j+1}\right], j=0, \ldots, m-1ηj[yj,yj+1],j=0,,m1, be intermediate points. Consider the sum
C ( f , I n , J m , ξ , η ) := i = 0 n 1 j = 0 m 1 h i y j y j + 1 f ( ξ i , t ) d t + i = 0 n 1 j = 0 m 1 l j x i x i + 1 f ( s , η j ) d s i = 0 n 1 j = 0 m 1 h i l j f ( ξ i , η j ) C f , I n , J m , ξ , η := i = 0 n 1 j = 0 m 1 h i y j y j + 1 f ξ i , t d t + i = 0 n 1 j = 0 m 1 l j x i x i + 1 f s , η j d s i = 0 n 1 j = 0 m 1 h i l j f ξ i , η j {:[C(f,I_(n),J_(m),xi,eta):=sum_(i=0)^(n-1)sum_(j=0)^(m-1)h_(i)int_(y_(j))^(y_(j+1))f(xi_(i),t)dt+sum_(i=0)^(n-1)sum_(j=0)^(m-1)l_(j)int_(x_(i))^(x_(i+1))f(s,eta_(j))ds],[-sum_(i=0)^(n-1)sum_(j=0)^(m-1)h_(i)l_(j)f(xi_(i),eta_(j))]:}\begin{aligned} C\left(f, I_{n}, J_{m}, \xi, \eta\right):= & \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} h_{i} \int_{y_{j}}^{y_{j+1}} f\left(\xi_{i}, t\right) \mathrm{d} t+\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} l_{j} \int_{x_{i}}^{x_{i+1}} f\left(s, \eta_{j}\right) \mathrm{d} s \\ & -\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} h_{i} l_{j} f\left(\xi_{i}, \eta_{j}\right) \end{aligned}C(f,In,Jm,ξ,η):=i=0n1j=0m1hiyjyj+1f(ξi,t)dt+i=0n1j=0m1ljxixi+1f(s,ηj)dsi=0n1j=0m1hiljf(ξi,ηj)
for which we assume that the involved integrals can more easily be computed than the original double integral
D := a b c d f ( s , t ) d s d t D := a b c d f ( s , t ) d s d t D:=int_(a)^(b)int_(c)^(d)f(s,t)dsdtD:=\int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} tD:=abcdf(s,t)ds dt
and
h i := x i + 1 x i , i = 0 , , n 1 , l j := y j + 1 y j , j = 0 , , m 1 . h i := x i + 1 x i , i = 0 , , n 1 , l j := y j + 1 y j , j = 0 , , m 1 . h_(i):=x_(i+1)-x_(i),quad i=0,dots,n-1,quadl_(j):=y_(j+1)-y_(j),quad j=0,dots,m-1.h_{i}:=x_{i+1}-x_{i}, \quad i=0, \ldots, n-1, \quad l_{j}:=y_{j+1}-y_{j}, \quad j=0, \ldots, m-1 .hi:=xi+1xi,i=0,,n1,lj:=yj+1yj,j=0,,m1.
With this assumption, we can state the following cubature formula:
Theorem 6. Let f : [ a , b ] × [ c , d ] R f : [ a , b ] × [ c , d ] R f:[a,b]xx[c,d]rarrRf:[a, b] \times[c, d] \rightarrow \mathbb{R}f:[a,b]×[c,d]R be as in Theorem 4 and I n , J m , ξ I n , J m , ξ I_(n),J_(m),xiI_{n}, J_{m}, \xiIn,Jm,ξ and η η eta\etaη be as above. Then we have the cubature formula:
a b c d f ( s , t ) d s d t = C ( f , I n , J m , ξ , η ) + R ( f , I n , J m , ξ , η ) a b c d f ( s , t ) d s d t = C f , I n , J m , ξ , η + R f , I n , J m , ξ , η int_(a)^(b)int_(c)^(d)f(s,t)dsdt=C(f,I_(n),J_(m),xi,eta)+R(f,I_(n),J_(m),xi,eta)\int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t=C\left(f, I_{n}, J_{m}, \xi, \eta\right)+R\left(f, I_{n}, J_{m}, \xi, \eta\right)abcdf(s,t)ds dt=C(f,In,Jm,ξ,η)+R(f,In,Jm,ξ,η)
where the remainder term R ( f , I n , J m , ξ , η ) R f , I n , J m , ξ , η R(f,I_(n),J_(m),xi,eta)R\left(f, I_{n}, J_{m}, \xi, \eta\right)R(f,In,Jm,ξ,η) satisfies the estimation:
(8) | R ( f , I n , J m , ξ , η ) | f s , t p [ i = 0 n 1 ( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 q + 1 ] 1 q [ j = 0 m 1 ( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 q + 1 ] 1 q f s , t p ( q + 1 ) 2 q i = 0 n 1 h i 1 + 1 q j = 0 m 1 l j 1 + 1 q (8) R f , I n , J m , ξ , η f s , t p i = 0 n 1 x i + 1 ξ i q + 1 + ξ i x i q + 1 q + 1 1 q j = 0 m 1 y j + 1 η j q + 1 + η j y j q + 1 q + 1 1 q f s , t p ( q + 1 ) 2 q i = 0 n 1 h i 1 + 1 q j = 0 m 1 l j 1 + 1 q {:[(8)|R(f,I_(n),J_(m),xi,eta)| <= ],[ <= ||f_(s,t)^('')||_(p)[sum_(i=0)^(n-1)((x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1))/(q+1)]^((1)/(q))[sum_(j=0)^(m-1)((y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1))/(q+1)]^((1)/(q))],[quad <= (||f_(s,t)^('')||_(p))/((q+1)^((2)/(q)))sum_(i=0)^(n-1)h_(i)^(1+(1)/(q))sum_(j=0)^(m-1)l_(j)^(1+(1)/(q))]:}\begin{align*} & \left|R\left(f, I_{n}, J_{m}, \xi, \eta\right)\right| \leq \tag{8}\\ & \leq\left\|f_{s, t}^{\prime \prime}\right\|_{p}\left[\sum_{i=0}^{n-1} \frac{\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left[\sum_{j=0}^{m-1} \frac{\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1}}{q+1}\right]^{\frac{1}{q}} \\ & \quad \leq \frac{\left\|f_{s, t}^{\prime \prime}\right\|_{p}}{(q+1)^{\frac{2}{q}}} \sum_{i=0}^{n-1} h_{i}^{1+\frac{1}{q}} \sum_{j=0}^{m-1} l_{j}^{1+\frac{1}{q}} \end{align*}(8)|R(f,In,Jm,ξ,η)|fs,tp[i=0n1(xi+1ξi)q+1+(ξixi)q+1q+1]1q[j=0m1(yj+1ηj)q+1+(ηjyj)q+1q+1]1qfs,tp(q+1)2qi=0n1hi1+1qj=0m1lj1+1q
for all ξ ξ xi\xiξ and η η eta\etaη as above.
Proof. Apply Theorem 4 on the interval [ x i , x i + 1 ] × [ y j , y j + 1 ] , i = 0 , , n 1 ; j = 0 , , m 1 x i , x i + 1 × y j , y j + 1 , i = 0 , , n 1 ; j = 0 , , m 1 [x_(i),x_(i+1)]xx[y_(j),y_(j+1)],i=0,dots,n-1;j=0,dots,m-1\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right], i=0, \ldots, n- 1 ; j=0, \ldots, m-1[xi,xi+1]×[yj,yj+1],i=0,,n1;j=0,,m1, to get:
| x i x i + 1 y j y j + 1 f ( s , t ) d s d t [ h i y j y j + 1 f ( ξ i , t ) d t + l j x i x i + 1 f ( s , η j ) d s h i l j f ( ξ i , η j ) ] | [ ( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 q + 1 ( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 q + 1 ] 1 q [ x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t ] 1 p x i x i + 1 y j y j + 1 f ( s , t ) d s d t h i y j y j + 1 f ξ i , t d t + l j x i x i + 1 f s , η j d s h i l j f ξ i , η j x i + 1 ξ i q + 1 + ξ i x i q + 1 q + 1 y j + 1 η j q + 1 + η j y j q + 1 q + 1 1 q x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t 1 p {:[|int_(x_(i))^(x_(i+1))int_(y_(j))^(y_(j+1))f(s,t)ds(d)t-[h_(i)int_(y_(j))^(y_(j+1))f(xi_(i),t)dt+l_(j)int_(x_(i))^(x_(i+1))f(s,eta_(j))ds-h_(i)l_(j)f(xi_(i),eta_(j))]|],[ <= [((x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1))/(q+1)*((y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1))/(q+1)]^((1)/(q))[int_(x_(i))^(x_(i+1))int_(y_(j))^(y_(j+1))|f(s,t)|^(p)(d)s(d)t]^((1)/(p))]:}\begin{aligned} & \left|\int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}} f(s, t) \mathrm{d} s \mathrm{~d} t-\left[h_{i} \int_{y_{j}}^{y_{j+1}} f\left(\xi_{i}, t\right) \mathrm{d} t+l_{j} \int_{x_{i}}^{x_{i+1}} f\left(s, \eta_{j}\right) \mathrm{d} s-h_{i} l_{j} f\left(\xi_{i}, \eta_{j}\right)\right]\right| \\ & \leq\left[\frac{\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1}}{q+1} \cdot \frac{\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1}}{q+1}\right]^{\frac{1}{q}}\left[\int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}}|f(s, t)|^{p} \mathrm{~d} s \mathrm{~d} t\right]^{\frac{1}{p}} \end{aligned}|xixi+1yjyj+1f(s,t)ds dt[hiyjyj+1f(ξi,t)dt+ljxixi+1f(s,ηj)dshiljf(ξi,ηj)]|[(xi+1ξi)q+1+(ξixi)q+1q+1(yj+1ηj)q+1+(ηjyj)q+1q+1]1q[xixi+1yjyj+1|f(s,t)|p ds dt]1p
for all i = 0 , , n 1 ; j = 0 , , m 1 i = 0 , , n 1 ; j = 0 , , m 1 i=0,dots,n-1;j=0,dots,m-1i=0, \ldots, n-1 ; j=0, \ldots, m-1i=0,,n1;j=0,,m1.
Summing over i i iii from 0 to n 1 n 1 n-1n-1n1 and over j j jjj from 0 to m 1 m 1 m-1m-1m1 and using the generalized triangle inequality and Hölder's discrete inequality for double sums, we deduce
| R ( f , I n , J m , ξ , η ) | i = 0 n 1 j = 0 m 1 [ ( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 q + 1 ( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 q + 1 ] 1 q × [ x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t ] 1 p [ i = 0 n 1 ( ( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 q + 1 ) ] 1 q [ j = 0 m 1 ( ( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 q + 1 ) ] 1 q × [ i = 0 n 1 j = 0 m 1 x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t ] 1 p = [ i = 0 n 1 ( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 q + 1 × j = 0 m 1 ( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 q + 1 ] 1 q × f s , t p . R f , I n , J m , ξ , η i = 0 n 1 j = 0 m 1 x i + 1 ξ i q + 1 + ξ i x i q + 1 q + 1 y j + 1 η j q + 1 + η j y j q + 1 q + 1 1 q × x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t 1 p i = 0 n 1 x i + 1 ξ i q + 1 + ξ i x i q + 1 q + 1 1 q j = 0 m 1 y j + 1 η j q + 1 + η j y j q + 1 q + 1 1 q × i = 0 n 1 j = 0 m 1 x i x i + 1 y j y j + 1 | f ( s , t ) | p d s d t 1 p = i = 0 n 1 x i + 1 ξ i q + 1 + ξ i x i q + 1 q + 1 × j = 0 m 1 y j + 1 η j q + 1 + η j y j q + 1 q + 1 1 q × f s , t p . {:[|R(f,I_(n),J_(m),xi,eta)| <= ],[ <= sum_(i=0)^(n-1)sum_(j=0)^(m-1)[((x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1))/(q+1)*((y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1))/(q+1)]^((1)/(q))],[quad xx[int_(x_(i))^(x_(i+1))int_(y_(j))^(y_(j+1))|f(s,t)|^(p)(d)s(d)t]^((1)/(p))],[ <= [sum_(i=0)^(n-1)(((x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1))/(q+1))]^((1)/(q))[sum_(j=0)^(m-1)(((y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1))/(q+1))]^((1)/(q))],[quad xx[sum_(i=0)^(n-1)sum_(j=0)^(m-1)int_(x_(i))^(x_(i+1))int_(y_(j))^(y_(j+1))|f(s,t)|^(p)(d)s(d)t]^((1)/(p))],[=[sum_(i=0)^(n-1)((x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1))/(q+1)xxsum_(j=0)^(m-1)((y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1))/(q+1)]^((1)/(q))xx||f_(s,t)^('')||_(p).]:}\begin{aligned} & \left|R\left(f, I_{n}, J_{m}, \xi, \eta\right)\right| \leq \\ & \leq \sum_{i=0}^{n-1} \sum_{j=0}^{m-1}\left[\frac{\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1}}{q+1} \cdot \frac{\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1}}{q+1}\right]^{\frac{1}{q}} \\ & \quad \times\left[\int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}}|f(s, t)|^{p} \mathrm{~d} s \mathrm{~d} t\right]^{\frac{1}{p}} \\ & \leq\left[\sum_{i=0}^{n-1}\left(\frac{\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1}}{q+1}\right)\right]^{\frac{1}{q}}\left[\sum_{j=0}^{m-1}\left(\frac{\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1}}{q+1}\right)\right]^{\frac{1}{q}} \\ & \quad \times\left[\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}}|f(s, t)|^{p} \mathrm{~d} s \mathrm{~d} t\right]^{\frac{1}{p}} \\ & =\left[\sum_{i=0}^{n-1} \frac{\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1}}{q+1} \times \sum_{j=0}^{m-1} \frac{\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1}}{q+1}\right]^{\frac{1}{q}} \times\left\|f_{s, t}^{\prime \prime}\right\|_{p} . \end{aligned}|R(f,In,Jm,ξ,η)|i=0n1j=0m1[(xi+1ξi)q+1+(ξixi)q+1q+1(yj+1ηj)q+1+(ηjyj)q+1q+1]1q×[xixi+1yjyj+1|f(s,t)|p ds dt]1p[i=0n1((xi+1ξi)q+1+(ξixi)q+1q+1)]1q[j=0m1((yj+1ηj)q+1+(ηjyj)q+1q+1)]1q×[i=0n1j=0m1xixi+1yjyj+1|f(s,t)|p ds dt]1p=[i=0n1(xi+1ξi)q+1+(ξixi)q+1q+1×j=0m1(yj+1ηj)q+1+(ηjyj)q+1q+1]1q×fs,tp.
To prove the second part, we observe that
( x i + 1 ξ i ) q + 1 + ( ξ i x i ) q + 1 ( x i + 1 x i ) q + 1 x i + 1 ξ i q + 1 + ξ i x i q + 1 x i + 1 x i q + 1 (x_(i+1)-xi_(i))^(q+1)+(xi_(i)-x_(i))^(q+1) <= (x_(i+1)-x_(i))^(q+1)\left(x_{i+1}-\xi_{i}\right)^{q+1}+\left(\xi_{i}-x_{i}\right)^{q+1} \leq\left(x_{i+1}-x_{i}\right)^{q+1}(xi+1ξi)q+1+(ξixi)q+1(xi+1xi)q+1
and
( y j + 1 η j ) q + 1 + ( η j y j ) q + 1 ( y j + 1 y j ) q + 1 y j + 1 η j q + 1 + η j y j q + 1 y j + 1 y j q + 1 (y_(j+1)-eta_(j))^(q+1)+(eta_(j)-y_(j))^(q+1) <= (y_(j+1)-y_(j))^(q+1)\left(y_{j+1}-\eta_{j}\right)^{q+1}+\left(\eta_{j}-y_{j}\right)^{q+1} \leq\left(y_{j+1}-y_{j}\right)^{q+1}(yj+1ηj)q+1+(ηjyj)q+1(yj+1yj)q+1
for all i , j i , j i,ji, ji,j as above and the intermediate points ξ i ξ i xi_(i)\xi_{i}ξi and η j η j eta_(j)\eta_{j}ηj.
We omit the details.
Remark 3. As
i = 0 n 1 h i 1 + 1 q [ ν ( h ) ] 1 q i = 0 n 1 h i = ( b a ) [ ν ( h ) ] 1 q i = 0 n 1 h i 1 + 1 q [ ν ( h ) ] 1 q i = 0 n 1 h i = ( b a ) [ ν ( h ) ] 1 q sum_(i=0)^(n-1)h_(i)^(1+(1)/(q)) <= [nu(h)]^((1)/(q))sum_(i=0)^(n-1)h_(i)=(b-a)[nu(h)]^((1)/(q))\sum_{i=0}^{n-1} h_{i}^{1+\frac{1}{q}} \leq[\nu(h)]^{\frac{1}{q}} \sum_{i=0}^{n-1} h_{i}=(b-a)[\nu(h)]^{\frac{1}{q}}i=0n1hi1+1q[ν(h)]1qi=0n1hi=(ba)[ν(h)]1q
and
j = 0 m 1 l j 1 + 1 q [ μ ( l ) ] 1 q j = 0 m 1 l j = ( d c ) [ μ ( l ) ] 1 q , j = 0 m 1 l j 1 + 1 q [ μ ( l ) ] 1 q j = 0 m 1 l j = ( d c ) [ μ ( l ) ] 1 q , sum_(j=0)^(m-1)l_(j)^(1+(1)/(q)) <= [mu(l)]^((1)/(q))sum_(j=0)^(m-1)l_(j)=(d-c)[mu(l)]^((1)/(q)),\sum_{j=0}^{m-1} l_{j}^{1+\frac{1}{q}} \leq[\mu(l)]^{\frac{1}{q}} \sum_{j=0}^{m-1} l_{j}=(d-c)[\mu(l)]^{\frac{1}{q}},j=0m1lj1+1q[μ(l)]1qj=0m1lj=(dc)[μ(l)]1q,
where
ν ( h ) = max { h i : i = 0 , , n 1 } ν ( h ) = max h i : i = 0 , , n 1 nu(h)=max{h_(i):i=0,dots,n-1}\nu(h)=\max \left\{h_{i}: i=0, \ldots, n-1\right\}ν(h)=max{hi:i=0,,n1}
and
μ ( l ) = max { l j : j = 0 , , m 1 } , μ ( l ) = max l j : j = 0 , , m 1 , mu(l)=max{l_(j):j=0,dots,m-1},\mu(l)=\max \left\{l_{j}: j=0, \ldots, m-1\right\},μ(l)=max{lj:j=0,,m1},
the right hand side of (8) can be bounded by
1 ( q + 1 ) 2 / q f s , t p ( b a ) ( d c ) [ ν ( h ) μ ( l ) ] 1 q 1 ( q + 1 ) 2 / q f s , t p ( b a ) ( d c ) [ ν ( h ) μ ( l ) ] 1 q (1)/((q+1)^(2//q))||f_(s,t)^('')||_(p)(b-a)(d-c)[nu(h)mu(l)]^((1)/(q))\frac{1}{(q+1)^{2 / q}}\left\|f_{s, t}^{\prime \prime}\right\|_{p}(b-a)(d-c)[\nu(h) \mu(l)]^{\frac{1}{q}}1(q+1)2/qfs,tp(ba)(dc)[ν(h)μ(l)]1q
Now, define the sum
C M ( f , I n , J m ) := i = 0 n 1 j = 0 m 1 h i y j y j + 1 f ( x i + x i + 1 2 , t ) d t + i = 0 n 1 j = 0 m 1 l j x i x i + 1 f ( s , y j + y j + 1 2 ) d s i = 0 n 1 j = 0 m 1 h i l j f ( x i + x i + 1 2 , y j + y j + 1 2 ) C M f , I n , J m := i = 0 n 1 j = 0 m 1 h i y j y j + 1 f x i + x i + 1 2 , t d t + i = 0 n 1 j = 0 m 1 l j x i x i + 1 f s , y j + y j + 1 2 d s i = 0 n 1 j = 0 m 1 h i l j f x i + x i + 1 2 , y j + y j + 1 2 {:[C_(M)(f,I_(n),J_(m)):=sum_(i=0)^(n-1)sum_(j=0)^(m-1)h_(i)int_(y_(j))^(y_(j+1))f((x_(i)+x_(i+1))/(2),t)dt],[+sum_(i=0)^(n-1)sum_(j=0)^(m-1)l_(j)int_(x_(i))^(x_(i+1))f(s,(y_(j)+y_(j+1))/(2))ds],[-sum_(i=0)^(n-1)sum_(j=0)^(m-1)h_(i)l_(j)f((x_(i)+x_(i+1))/(2),(y_(j)+y_(j+1))/(2))]:}\begin{aligned} C_{M}\left(f, I_{n}, J_{m}\right):= & \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} h_{i} \int_{y_{j}}^{y_{j+1}} f\left(\frac{x_{i}+x_{i+1}}{2}, t\right) \mathrm{d} t \\ & +\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} l_{j} \int_{x_{i}}^{x_{i+1}} f\left(s, \frac{y_{j}+y_{j+1}}{2}\right) \mathrm{d} s \\ & -\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} h_{i} l_{j} f\left(\frac{x_{i}+x_{i+1}}{2}, \frac{y_{j}+y_{j+1}}{2}\right) \end{aligned}CM(f,In,Jm):=i=0n1j=0m1hiyjyj+1f(xi+xi+12,t)dt+i=0n1j=0m1ljxixi+1f(s,yj+yj+12)dsi=0n1j=0m1hiljf(xi+xi+12,yj+yj+12)
Then we have the best cubature formula we can get from Theorem 6.
Corollary 7. Under the above assumptions we have
a b c d f ( s , t ) d s d t = C M ( f , I n , J m ) + R ( f , I n , J m ) a b c d f ( s , t ) d s d t = C M f , I n , J m + R f , I n , J m int_(a)^(b)int_(c)^(d)f(s,t)dsdt=C_(M)(f,I_(n),J_(m))+R(f,I_(n),J_(m))\int_{a}^{b} \int_{c}^{d} f(s, t) \mathrm{d} s \mathrm{~d} t=C_{M}\left(f, I_{n}, J_{m}\right)+R\left(f, I_{n}, J_{m}\right)abcdf(s,t)ds dt=CM(f,In,Jm)+R(f,In,Jm)
where the remainder R ( f , I n , J m ) R f , I n , J m R(f,I_(n),J_(m))R\left(f, I_{n}, J_{m}\right)R(f,In,Jm) satisfies the estimation:
| R ( f , I n , J m ) | 1 4 ( q + 1 ) 2 / q f s , t p i = 0 n 1 h i 1 + 1 q j = 0 m 1 l j 1 + 1 q R f , I n , J m 1 4 ( q + 1 ) 2 / q f s , t p i = 0 n 1 h i 1 + 1 q j = 0 m 1 l j 1 + 1 q |R(f,I_(n),J_(m))| <= (1)/(4(q+1)^(2//q))||f_(s,t)^('')||_(p)sum_(i=0)^(n-1)h_(i)^(1+(1)/(q))sum_(j=0)^(m-1)l_(j)^(1+(1)/(q))\left|R\left(f, I_{n}, J_{m}\right)\right| \leq \frac{1}{4(q+1)^{2 / q}}\left\|f_{s, t}^{\prime \prime}\right\|_{p} \sum_{i=0}^{n-1} h_{i}^{1+\frac{1}{q}} \sum_{j=0}^{m-1} l_{j}^{1+\frac{1}{q}}|R(f,In,Jm)|14(q+1)2/qfs,tpi=0n1hi1+1qj=0m1lj1+1q

REFERENCES

[1] Dragomir, S. S. and Wang, S., A new inequality of Ostrowski's type in L 1 L 1 L_(1)L_{1}L1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28, pp. 239-244, 1997.
[2] Dragomir, S. S. and Wang, S., An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33, pp. 15-20, 1997.
[3] Dragomir, S. S. and Wang, S., Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11, pp. 105-109, 1998.
[4] Dragomir, S. S. and Wang, S., A new inequality of Ostrowski's type in L p L p L_(p)L_{p}Lp-norm, Indian J. Math., 40, no. 3, pp. 299-304, 1998.
[5] Mitrinović, D. S., Pec̆arić, J. E. and Fink, A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
Received by the editors: September 29, 1998.

  1. *School of Computer Science & Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia, e-mail:
    {sever, neil, pc}@matilda.vu.edu.au.