On the flow of a thin liquid layer in an inclined channel of triangular transverse section driven by a surface tension gradient. Numerical and asymptotic analysis

Authors

  • Titus Petrila “Babes-Bolyai” University, Cluj-napoca, Romania
  • Emilia Borşa University of Oradea, Romania

DOI:

https://doi.org/10.33993/jnaat322-749

Keywords:

thin film approximation, surface tension gradient
Abstract views: 185

Abstract

In this paper we investigate the locally unidirectional flow of a thin liquid layer confined to an inclined channel driven simultaneously by a surface tension gradient.

Downloads

Download data is not yet available.

References

Acheson, D. J., Elementary Fluid Dynamics, Oxford University Press, Oxford, United Kingdom, pp. 238-259, 1990.

Allen, R. F. and Biggin, C. M., Stability regions of nonlinear autonomous systems, IEEE Trans. Aut. Control, 33, pp. 16-27, 1988, https://doi.org/10.1109/9.357. DOI: https://doi.org/10.1109/9.357

Braun, R. F. and Murray, B. T., Lubrication theory for reactive spreading of a thin drop, Phys. Fliuds, 7, 1995, https://doi.org/10.1063/1.868497. DOI: https://doi.org/10.1063/1.868497

Chifu, E., Gheorghiu, C. I. and Stan, I., Surface mobility of surfactant solution. Numerical analysis for the Marangoni and gravity flow in a thin liquid layer of triangular section, Rev. Roumaine Chim., 29, pp. 31-42, 1984.

Duffy, B. R. and Moffatt, H. K., Flow of a viscous trickle on a slowly varying, The Chemical Engeneering Journal, 60, pp. 141-146, 1995, https://doi.org/10.1016/0923-0467(95)03030-1. DOI: https://doi.org/10.1016/0923-0467(95)03030-1

Duffy, B. R. and Wilson, S. K., A third-order differential equation arising in thin-film flows and relevant to Tanner's law, Appl. Math. Lett., 10, no. 3, pp. 63-68, 1997, https://doi.org/10.1016/S0893-9659(97)00036-0. DOI: https://doi.org/10.1016/S0893-9659(97)00036-0

Ockendon, H. and Ockendon, J. R., Viscous Flow, Cambridge University Press, 1995. DOI: https://doi.org/10.1017/CBO9781139174206

Towel, G. D. and Rothfeld, L. B., Hydrodynamics of rivulet flow, AIChE. J., 12, 1972, https://doi.org/10.1002/aic.690120524. DOI: https://doi.org/10.1002/aic.690120524

Wilson, S. K. and Terrrill, E. L., The dynamics of planar and axisymmetric holes in thin fluid layers, in First European Coating Symposium on The Mechanics of Thin Film Coatings, Leeds University, U.K., edited by Gaskell, P. H., Savage, 1995. DOI: https://doi.org/10.1142/9789814503914_0026

Young, G. W. and Davis, S. H., Rivulet instabilities, J. Fluid Mech., 176, no. 1, 1987, pp. 1-31, https://doi.org/10.1017/S0022112087000557. DOI: https://doi.org/10.1017/S0022112087000557

Downloads

Published

January 3, 2025

How to Cite

Petrila, T., & Borşa, E. (2003). On the flow of a thin liquid layer in an inclined channel of triangular transverse section driven by a surface tension gradient. Numerical and asymptotic analysis. Rev. Anal. Numér. Théor. Approx., 32(2), 203–207. https://doi.org/10.33993/jnaat322-749

Issue

Section

Articles