Local convergence of general Steffensen type methods
DOI:
https://doi.org/10.33993/jnaat331-762Keywords:
nonlinear scalar equations, Steffensen type methodAbstract
We study the local convergence of a generalized Steffensen method. We show that this method substantially improves the convergence order of the classical Steffensen method. The convergence order of our method is greater or equal to the number of the controlled nodes used in the Lagrange-type inverse interpolation, which, in its turn, is substantially higher than the convergence orders of the Lagrange type inverse interpolation with uncontrolled nodes (since their convergence order is at most \(2\)).Downloads
References
Balázs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numér. Théor. Approx., 21, no. 2, pp. 111-117, 1992, http://ictp.acad.ro/jnaat/journal/article/view/1992-vol21-no2-art3
Brent, R., Winograd, S. and Walfe, Ph., Optimal iterative processes for root-finding, Numer. Math., 20, no. 5, pp. 327-341, 1973, https://doi.org/10.1007/bf01402555 DOI: https://doi.org/10.1007/BF01402555
Coman, C., Some practical approximation methods for nonlinear equations, Mathematica -- Rev. Anal. Numér. Théor. Approx., 11, nos. 1-2, pp. 41-48, 1982, http://ictp.acad.ro/jnaat/journal/article/view/1982-vol11-nos1-2-art5
Cassulli, V. and Trigiante, D., The convergence order for iterative multipoint procedures, Calcolo, 13, no. 1, pp. 25-44, 1977, https://doi.org/10.1007/bf02576646 DOI: https://doi.org/10.1007/BF02576646
Iancu, C., Păvăloiu, I. and Şerb, I., Méthodes iteratives optimales de type Steffensen obtinues par interpolation inverse, Faculty of Mathematics, "Babeş-Bolyai" University, Seminar on Functional analysis and Numerical Methods, Preprint no. 1, pp. 81-88, 1983.
Kacewicz, B., An integral-interpolation iterative method for the solution of scalar equations, Numer. Math., 26, no. 4, pp. 355-365, 1976, https://doi.org/10.1007/bf01409958 DOI: https://doi.org/10.1007/BF01409958
Ostrowski, A., Solution of Equations in Euclidian and Banach Spaces, Academic Press, New York and London, 1973.
Păvăloiu, I., La résolution des equations par interpolation, Mathematica, 23(46), no. 1, pp. 61-72, 1981.
Păvăloiu, I. and Şerb, I., Sur des méthodes de type intérpolatoire à vitesse de convergence optimale, Rev. Anal. Numér. Théor. Approx., 12, no. 1, pp. 83-88, 1983, http://ictp.acad.ro/jnaat/journal/article/view/1983-vol12-no1-art10
Păvăloiu, I., Optimal efficiency index for iterative methods of interpolatory type, Computer Science Journal of Moldova, 5, no. 1 (13), pp. 20-43, 1997.
Traub, J. F., Iterative Methods for the Solution of Equations, Pretince-Hall, Inc. Englewood Clifs, N.J., 1964.
Turowicz, A. B., Sur les derivées d'ordre superieur d'une fonction inverse, Ann. Polon. Math., 8, pp. 265-269, 1960, https://doi.org/10.4064/ap-8-3-265-269 DOI: https://doi.org/10.4064/ap-8-3-265-269
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.