On some bivariate interpolation procedures


  • Dimitrie D. Stancu “Babes-Bolyai” University, Cluj-Napoca, Romania
  • Ioana Taşcu North University of Baia Mare, Romania




bivariate interpolation, divided differences, bivariate polynomial interpolation formulas of Lagrange, Newton, Taylor, Hermite and Biermann
Abstract views: 256


In an important paper published in 1966 by the first author [10] a very general interpolation formula for univariate functions, which includes, as special cases, the classical interpolation formulae of Lagrange, Newton, Taylor and Hermite was introduced and investigated. The purpose of the present paper is to extend that formula to the two-dimensional case. The remainders are expressed by means of partial divided differences and derivatives.


Download data is not yet available.


Biermann, O., Über näherungsweise Kubaturen, Monatsh. Math. Phys., 14, pp. 211-225,, 1903, https://doi.org/10.1007/bf01706869 DOI: https://doi.org/10.1007/BF01706869

Hermite, C., Sur la formule d'interpolation de Lagrange, J. Reine Angew. Math., 84, pp. 70-79, 1878, https://doi.org/10.1515/crll.1878.84.70 DOI: https://doi.org/10.1515/crelle-1878-18788405

Johansen, P., Über osculierende Interpolation, Skand. Actuarietidskr, 14, pp. 231-237, 1931, https://doi.org/10.1080/03461238.1931.10405852 DOI: https://doi.org/10.1080/03461238.1931.10405852

Salzer, A., A multi-point generalization of Newton's divided difference formula, Proc. Amer. Math. Soc., 13, pp. 210-212, 1962, https://doi.org/10.1090/s0002-9939-1962-0137285-1 DOI: https://doi.org/10.1090/S0002-9939-1962-0137285-1

Simonsen, W., On divided differences and osculatory interpolation, Skand. Akturietidskr., 31, pp. 157-164, 1948, https://doi.org/10.1080/03461238.1948.10404897 DOI: https://doi.org/10.1080/03461238.1948.10404897

Stancu, D. D., On the interpolation formula of Hermite and on some applications of it (Romanian), Acad. R. P. Rom. Fil. Cluj, Stud. Cerc. Mat., 8, pp. 339-355, 1957.

Stancu, D. D., Considerations on the polynomial interpolation formulas for functions of several variables, Bul. Univ. Babeş-Bolyai, Ser. St. Nat. (Romanian), 1, pp. 43-82, 1957.

Stancu, D. D., On the integral representation of the remainder in a Taylor formula of two variables, Acad. R. P. Rom. Fil. Cluj, Stud. Cerc. Mat., 13, pp. 175-182, 1962.

Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. Ser. B, 1, pp. 137-143, 1964, https://doi.org/10.1137/0701013 DOI: https://doi.org/10.1137/0701013

Stancu, D. D., On Hermite's osculatory interpolation formula and on some generalizations of it, Mathematica (Cluj), 8(31), pp. 373-391, 1966.




How to Cite

Stancu, D. D., & Taşcu, I. (2004). On some bivariate interpolation procedures. Rev. Anal. Numér. Théor. Approx., 33(1), 97–106. https://doi.org/10.33993/jnaat331-765