Extension of bounded linear functionals and best approximation in spaces with asymmetric norm

Authors

  • Ş. Cobzaş "Babeş-Bolyai" University, Cluj-Napoca, Romania
  • C. Mustăţa Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat331-757

Keywords:

spaces with asymmetric norm, best approximation, Hahn-Banach theorem, characterization of best approximation
Abstract views: 342

Abstract

The present paper is concerned with the characterization of the elements of best approximation in a subspace \(Y\) of a space with asymmetric norm, in terms of some linear functionals vanishing on \(Y\). The approach is based on some extension results, proved in Section 3, for bounded linear functionals on such spaces. Also, the well known formula for the distance to a hyperplane in a normed space is extended to the nonsymmetric case.

Downloads

Download data is not yet available.

References

Babenko, V. F. and Kofanov, V. A., Nonsymmetric approximations of classes of differentiable functions by algebraic polynomials in the mean, Anal. Math., 14, no. 3, pp. 193-217, 1988.

Borodin, P. A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329-337, 2001, https://doi.org/10.4213/mzm506 DOI: https://doi.org/10.4213/mzm506

De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx. Theory, 94, no. 1, pp. 54-72, 1998, https://doi.org/10.1006/jath.1998.3177 DOI: https://doi.org/10.1006/jath.1998.3177

Dolzhenko, E. P. and Sevast′yanov, E. A., Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat., 62, no. 6, pp. 59-102, 1998. DOI: https://doi.org/10.1070/IM1998v062n06ABEH000221

-, Sign-sensitive approximations, J. Math. Sci. (New York), 91, no. 5, pp. 3205-3257, 1998, Analysis, 10, https://doi.org/10.1007/bf02433803 DOI: https://doi.org/10.1007/BF02433803

Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, no. 3, pp. 877-884, 1993, https://doi.org/10.1216/rmjm/1181072529 DOI: https://doi.org/10.1216/rmjm/1181072529

García-Raffi, L. M., Romaguera, S., and Sánchez-Pérez, E. A., The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83-96, 2003,https://doi.org/10.2989/16073600309486046 DOI: https://doi.org/10.2989/16073600309486046

García-Raffi, L. M., Romaguera, S. and Sánchez Pérez, E. A., On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29, no. 3, pp. 717-728 (electronic) 2003.

Kozko, A. I., On the order of best approximation in spaces with an asymmetric norm and a sign-sensitive weight in classes of differentiable functions, Izv. Ross. Akad. Nauk Ser. Mat., 66, no. 1, pp. 103-132, 2002. DOI: https://doi.org/10.1070/IM2002v066n01ABEH000373

Krein, M. G. and Nudel′man, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow 1973 (in Russian). English translation: American Mathematical Society, Providence, R.I. 1977.

Chong Li, On well posed generalized best approximation problems, J. Approx. Theory, 107, no. 1, pp. 96-108, 2000, https://doi.org/10.1006/jath.2000.3503 DOI: https://doi.org/10.1006/jath.2000.3503

Chong Li and Renxing Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115, no. 1, pp. 44-55, 2002, https://doi.org/10.1006/jath.2001.3651 DOI: https://doi.org/10.1006/jath.2001.3651

Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8

-, On the extremal semi-Lipschitz functions, Rev. Anal. Numer. Theor. Approx., 31, no. 1, pp. 103-108, 2002, http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art11

-, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18, no. 2, pp. 275-280, 2002.

-, On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Numér. Théor. Approx., 32, no. 2, pp. 187-192, 2003, http://ictp.acad.ro/jnaat/journal/article/view/2003-vol32-no2-art7

Renxing Ni, Existence of generalized nearest points, Taiwanese J. Math., 7, no. 1, pp. 115-128, 2003, https://doi.org/10.11650/twjm/1500407521 DOI: https://doi.org/10.11650/twjm/1500407521

Ramazanov, A.-R. K., Direct and inverse theorems in approximation theory in the metric of a sign-sensitive weight, Anal. Math., 21, no. 3, pp. 191-212, 1995.

-, Sign-sensitive approximations of bounded functions by polynomials, Izv. Vyssh. Uchebn. Zaved. Mat., no. 5, pp. 53-58, 1998.

Simonov, B. V., On the element of best approximation in spaces with nonsymmetric quasinorm, Mat. Zametki, 74, no. 6, pp. 902-912, 2003, https://doi.org/10.4213/mzm318 DOI: https://doi.org/10.1023/B:MATN.0000009022.34482.3e

Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. DOI: https://doi.org/10.1007/978-3-662-41583-2

Downloads

Published

2004-02-01

How to Cite

Cobzaş, Ş., & Mustăţa, C. (2004). Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numér. Théor. Approx., 33(1), 39–50. https://doi.org/10.33993/jnaat331-757

Issue

Section

Articles