Combined Shepard operators with Chebyshev nodes
DOI:
https://doi.org/10.33993/jnaat331-761Keywords:
Shepard interpolation, Chebyshev nodesAbstract
In this paper we study combined Shepard-Lagrange univariate interpolation operator\[S_{n,\mu}^{L,m}(Y;f,x):=S_{n,\mu}^{L,m}(f,x)=\frac{\sum\limits_{k=0}^{n+1}\left\vert x-y_{n,k}\right\vert ^{-\mu}(L_{m}f)(x,y_{n,k})}{\sum\limits_{k=0}^{n+1}\left\vert x-y_{n,k}\right\vert ^{-\mu}},\]where \((y_{n,k})\) are the interpolation nodes and \((L_{m}f)(x;y_{n,k})\) is the Lagrange interpolation polynomial with nodes \( y_{n,k},\, y_{n,k+1}, \, y_{n,k+2}, \ldots, \, y_{n,k+m} \), when the interpolation nodes \((y_{n,k})_{k=\overline{1,n}}\) are the zeros of first kind Chebyshev polynomial completed with \(y_{n,0}=-1\)and \(y_{n,n+1}=1\). We give a direct proof for error estimation and some numerical examples.Downloads
References
Gh. Coman and R. Trîmbiţaş, Combined Shepard univariate operators, East Journal on Approximations, 7, no. 4, pp. 471-483, 2001.
G. Criscuolo and G. Mastroianni, Estimates of the Shepard interpolatory procedure, Acta. Math. Hung., 61, nos. 1-2, pp. 79-91, 1993, https://doi.org/10.1007/bf01872100 DOI: https://doi.org/10.1007/BF01872100
M. Crouzeix and A. L. Mignot, Analyse numérique des équations différentielles, 2e édition, Masson, Paris, 1989.
B. Della Vecchia and G. Mastroianni, Pointwise estimates of rational operators based on general distribution of knots, Facta Universitatis (Niš), Ser. Math. Inform., 6, pp. 63-78, 1991.
B. Della Vecchia and G. Mastroianni, Pointwise simultaneous approximation by rational operators, J. Approx. Theory, 65, pp. 140-150, 1991, https://doi.org/10.1016/0021-9045(91)90099-v DOI: https://doi.org/10.1016/0021-9045(91)90099-V
R. Trîmbiţaş, Univariate Shepard-Lagrange interpolation, Kragujevac J. Math., 24, pp. 85-94, 2002.
D. Shepard, A two dimensional interpolation function for irregularly spaced data, Proc. 23rd Nat. Conf. ACM, pp. 517-523, 1968. DOI: https://doi.org/10.1145/800186.810616
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.