On some inequalities for the approximation numbers of the sum and product of operators
DOI:
https://doi.org/10.33993/jnaat341-797Keywords:
approximation numbers, symmetric norming functionAbstract
We prove the inequalities:\begin{equation}\textstyle\sum\limits_{n=1}^{k} a_{n} \left(\textstyle\sum\limits_{i=1}^{r} S_{i}\right) \le r\textstyle\sum\limits_{n=1} ^{k}\, \textstyle\sum\limits_{i=1}^{r}a_{n}(S_{i}),\end{equation}\begin{equation}\textstyle\sum\limits_{n=1}^{k} a_{n}\left(\textstyle\prod\limits_{i=1}^{r} S_{i}\right) \leq r\textstyle\sum\limits_{n=1}^{k} \textstyle\prod\limits_{i=1}^{r}a_{n}(S_{i})\;,\;k=1,2,...,\;\;r\geq2,\end{equation}and\begin{equation}\textstyle\prod\limits_{n=1}^{k} a_{n}\left(\textstyle\prod\limits_{i=1}^{r} S_{i}\right)\leq\textstyle\prod\limits_{n=1}^{k}\textstyle\prod\limits_{i=1}^{r}a_{n}^{r}(S_{i})\;,\;k=1,2,...,\;\;\;r \geq2,\end{equation}where \(\left\{ a_{n}(S)\right\} \;\) is the sequence of the approximation numbers of the linear and bounded operators \(S: X\rightarrow X\) \((S\in L(X))\). \(X\) is a Banach space.Downloads
References
Fan, K., Maximum properties and inequalities for the eigenvalues of completely continous operators, Proc. Nat. Acad. Sci. USA, 37, pp. 760-766, 1951, https://doi.org/10.1073/pnas.37.11.760 DOI: https://doi.org/10.1073/pnas.37.11.760
Gohberg, I. and Krein, M., Introduction to the theory of non-selfadjoint operators, AMS Providence, 1969, https://doi.org/10.1090/mmono/018 DOI: https://doi.org/10.1090/mmono/018
Horn, A., On the singular values of product of completely continuous operators, Proc. Nat. Acad. Sci. USA, 36, pp. 374-375, 1950, https://doi.org/10.1073/pnas.36.7.374 DOI: https://doi.org/10.1073/pnas.36.7.374
Salinas, N., Symmetric norm ideals and relative conjugate ideals, Trans. Amer. Math. Soc., 36, pp. 467-487, 1950.
Schatten, R., Norm ideals of completely continuous operators, Springer-Verlag, 1960, https://doi.org/10.1007/978-3-642-87652-3_6 DOI: https://doi.org/10.1007/978-3-642-87652-3
Tiţa, N., Operatori de clasă σp, Studii cercet. Mat., 23, pp. 467-487, 1971.
Tiţa, N., Normed Operator ideals, Brasov Univ. Press, 1979 (in Romanian).
Tiţa, N., lφϕ-operators and (φϕ) spaces, Collect. Mat., 30, pp. 3-10, 1979.
Tiţa, N., Ideale de operatori generate de s numere, Ed. Univ. "Transilvania", Braşov, 1998.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.