Biermann interpolation of Birkhoff type
DOI:
https://doi.org/10.33993/jnaat341-789Keywords:
Biermann interpolation, Birkhoff interpolation, chains of projectors, approximation orderAbstract
If \(P_{0},P_{1},...,P_{r}\) and \(Q_{0},Q_{1},...,Q_{r}\) are Birkhoff univariate projectors which form the chains\[P_{0}\le P_{1}\le\dots\le P_{r},\quad Q_{0}\le Q_{1}\le\dots\le Q_{r},\]we can define the Biermann operator of Birkhoff type\[B_{r}^{B}=P_{0}^{\prime}Q_{r}^{\prime\prime}\oplus P_{1}^{\prime}Q_{r-1}^{\prime\prime}\oplus\dots\oplus P_{r}^{\prime}Q_{0}^{\prime\prime},\]where \(P_{1}^{\prime},\dots,P_{r}^{\prime}\),\(Q_{1}^{\prime\prime},\dots ,Q_{r}^{\prime\prime}\) are the parametric extension. We give the representations of Biermann interpolant of Birkhoff type for two particular cases (Abel-Goncharov and Lidstone projectors) and we calculate the approximation order of Biermann interpolant in these cases.Downloads
References
Agarwal, R., Wong, P.J.Y., Error inegalities in polynomial interpolation and their applications, Kluwer Academic Publishers, Dordrecht, 1993, https://doi.org/10.1007/978-94-011-2026-5 DOI: https://doi.org/10.1007/978-94-011-2026-5_5
Biermann, O., Uber naherungsweise Cubaturen, Monatshefte fur Mathematik und Physic, 14, pp. 211-225, 1903, https://doi.org/10.1007/bf01706869 DOI: https://doi.org/10.1007/BF01706869
Coman, Gh., Multivariate approximation schemes and the approximation of linear functionals, Rev. Anal. Numér. Théor. Approx. - Mathematica, 16, pp. 229-249, 1974.
Coman, Gh. and all, Interpolation operators, Casa Cărţii de Ştiinţă, 2004.
Davis, Ph. J., Interpolation and approximation, Blaisdell Publishing Company, New york, 1963.
Delvos, F.-J. and Schempp, W., Boolean methods in interpolation and approximation, Pitman Research Notes in Mathematics, Series 230, New York 1989.
Delvos, F.-J. and Posdorf, H., Generalized Biermann interpolation, Resultate Math., 5, no. 1, pp. 6-18, 1982, https://doi.org/10.1007/bf03323297 DOI: https://doi.org/10.1007/BF03323297
Gordon, William J., Distributive lattices and the approximation of multivariate functions, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969), pp. 223-277, Academic Press, New York.
Gordon, William J.; Hall, Charles A. Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math., 21, pp. 109-129, 1973/74, https://doi.org/10.1007/bf01436298 DOI: https://doi.org/10.1007/BF01436298
Birou, M., Biermann interpolation with Hermite information, Studia Univ. "Babeş-Bolyai", to appear.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.