Bounds for the remainder in the bivariate Shepard interpolation of Lidstone type
DOI:
https://doi.org/10.33993/jnaat341-790Keywords:
bivariate Shepard-Lidstone interpolation, remainderAbstract
We study the bivariate Shepard-Lidstone interpolation operator and obtain new estimates for the remainder. Some numerical examples are provided.Downloads
References
R. Agarwal, P.J.Y. Wong, Explicit error bounds for the derivatives of piecewise-Lidstone interpolation, J. of Comput. Appl. Math., 58, pp. 67-88, 1993, DOI: https://doi.org/10.1016/0377-0427(93)E0262-K
R. Agarwal, P.J.Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publishers, Dordrecht, 1993, https://doi.org/10.1007/978-94-011-2026-5 DOI: https://doi.org/10.1007/978-94-011-2026-5_5
T. Catinaş, The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal. Numér. Théor. Approx., 32, no. 1, pp. 11-20, 2003.
T. Catinaş, The combined Shepard-Lidstone univariate operator, Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 21-25, pp. 3-15, 2003.
T. Cătinaş, The combined Shepard-Lidstone bivariate operator, Trends and Applications in Constructive Approximation (Eds. M.G. de Bruin, D.H. Mache and J. Szabados), International Series of Numerical Mathematics, 151, Birkhäuser Verlag, Basel, pp. 77-83, 2005. DOI: https://doi.org/10.1007/3-7643-7356-3_7
T. Catinaş, The Lidstone interpolation on tetrahedron, J. Appl. Funct. Anal., 1, no. 1, Nova Science Publishers, Inc., New York, 2006 (to appear).
E. W. Cheney, Multivariate Approximation Theory, Selected Topics, CBMS51, SIAM, Philadelphia, Pennsylvania, 1986,https://doi.org/10.1137/1.9781611970197 DOI: https://doi.org/10.1137/1.9781611970197
W. Cheney and W. Light, A Course in Approximation Theory, Brooks/Cole Publishing Company, Pacific Grove, 2000.
Gh. Coman, The remainder of certain Shepard type interpolation formulas, Studia Univ. "Babeş-Bolyai", Mathematica, XXXII, no. 4, pp. 24-32, 1987.
Gh. Coman, Shepard operators of Birkhoff type, Calcolo, 35, pp. 197-203, 1998, https://doi.org/10.1007/s100920050016 DOI: https://doi.org/10.1007/s100920050016
Gh. Coman, T. Catinaş, M. Birou, A. Oprişan, C. Oşan, I. Pop, I. Somogyi, I. Todea, Interpolation operators, Ed. "Casa Carţii de Ştiinţa", Cluj-Napoca, 2004 (in Romanian).
Gh. Coman and R. Trîmbiţaş, Combined Shepard univariate operators, East Jurnal on Approximations, 7, 4, pp. 471-483, 2001.
F.A. Costabile and F. Dell'Accio, Lidstone approximation on the triangle, Appl. Numer. Math., 52, no. 4, 339-361, 2005, https://doi.org/10.1016/j.apnum.2004.08.003 DOI: https://doi.org/10.1016/j.apnum.2004.08.003
R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, 1993, https://doi.org/10.1007/978-3-662-02888-9 DOI: https://doi.org/10.1007/978-3-662-02888-9
N. Dyn, D. Leviatan, D. Levin, A. Pinkus (Eds.), Multivariate Approximation and Applications, Cambridge University Press, 2001, https://doi.org/10.1017/cbo9780511569616 DOI: https://doi.org/10.1017/CBO9780511569616
R. Farwig, Rate of convergence of Shepard's global interpolation formula, Math. Comp., 46, no. 174, pp. 577-590, 1986, https://doi.org/10.1090/s0025-5718-1986-0829627-0 DOI: https://doi.org/10.1090/S0025-5718-1986-0829627-0
B. Sendov and A. Andreev, Approximation and Interpolation Theory, in Handbook of Numerical Analysis, vol. III, ed. P.G. Ciarlet and J.L. Lions, 1994, https://doi.org/10.1016/s1570-8659(05)80017-1 DOI: https://doi.org/10.1016/S1570-8659(05)80017-1
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.