On the \(L_{p}\)-saturation of the Ye-Zhou operator

Authors

  • Zoltán Finta “Babes-Bolyai” University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat341-791

Keywords:

Ye-Zhou operator, Kantorovich operator, saturation theorem
Abstract views: 216

Abstract

We solve the saturation problem for a class of Ye-Zhou operator \(T_{n}( f , x ) = P_{n}( x ) A_{n} L_{n}( f )\) with suitable sequence of matrices \(\{ A_{n} \}_{n \geq 1}.\) The solution is based on the saturation theorem for the Kantorovich operator established by V. Maier and S. D. Riemenschneider.

Downloads

Download data is not yet available.

References

DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Maier, V., The L₁-saturation class of the Kantorovich operator, J. Approx. Theory, 22, pp. 223-232, 1978, https://doi.org/10.1016/0021-9045(78)90054-0 DOI: https://doi.org/10.1016/0021-9045(78)90054-0

Maier, V., Lp-approximation by Kantorovich operators, Analysis Math., 4, pp. 289-295, 1978, https://doi.org/10.1007/bf02020576 DOI: https://doi.org/10.1007/BF02020576

Riemenschneider, S. D., The Lp-saturation of the Bernstein-Kantorovich polynomials, J. Approx. Theory, 23, pp. 158-162, 1978, https://doi.org/10.1016/0021-9045(78)90102-8 DOI: https://doi.org/10.1016/0021-9045(78)90102-8

Ye, M. D. and Zhou, D. X., A class of operators by means of three-diagonal matrices, J. Approx. Theory, 78, pp. 239-259, 1994, https://doi.org/10.1006/jath.1994.1075 DOI: https://doi.org/10.1006/jath.1994.1075

Zhou, D. X., On smoothness characterized by Bernstein type operators, J. Approx. Theory, 81, pp. 303-315, 1995, https://doi.org/10.1006/jath.1995.1052 DOI: https://doi.org/10.1006/jath.1995.1052

Downloads

Published

2005-02-01

How to Cite

Finta, Z. (2005). On the \(L_{p}\)-saturation of the Ye-Zhou operator. Rev. Anal. Numér. Théor. Approx., 34(1), 55–62. https://doi.org/10.33993/jnaat341-791

Issue

Section

Articles