On the asymptotic behavior of \(L_{p}\) extremal polynomials
DOI:
https://doi.org/10.33993/jnaat342-799Keywords:
asymptotic behavior, \( L_{p}\) extremal polynomialsAbstract
Let \(\beta \) denote a positive Szeg? measure on the unit circle \(\Gamma \) and \(\delta _{z_{k}}\) denote an anatomic measure (\(\delta \) Dirac) centered on the point \(z_{k}.\) We study, for all \(p>0,\) the asymptotic behavior of \(L_{p}\) extremal polynomials with respect to a measure of the type \[ \alpha =\beta +\sum_{k=1}^{\infty }A_{k}\delta _{z_{k}}, \] where \(\left\{ z_{k}\right\} _{k=1}^{\infty }\) is an infinite collection of points outside \(\Gamma \).Downloads
References
Bello Hernandez, M., Marcellan, F. and Minguez Ceniceros, J., Pseudo uniform convexity in Hp and some extremal problems on Sobolev spaces, Complex variables, 48, no. 5, pp. 429-440, 2003, https://doi.org/10.1080/0278107031000097023 DOI: https://doi.org/10.1080/0278107031000097023
Benzine, R., Asymptotic behavior of orthogonal polynomials corresponding to a measure with infinite discrete part off a curve, J. Approx. Theory, 89, pp. 257-265, 1997, https://doi.org/10.1006/jath.1997.3041 DOI: https://doi.org/10.1006/jath.1997.3041
Bernstein, S.N., Sur les polynômes orthogonaux relatifs à un segment fini I, II, J. Math. Pures Appl., 9, pp. 127-177, 1930; 10, pp. 219-286, 1931.
Duren, P.L., Theory of H^{p} spaces, Academic Press. New York, 1970.
Geronimo, J.S. and Case, K.M., Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc., 258, pp. 467-494, 1980, https://doi.org/10.1090/s0002-9947-1980-0558185-4 DOI: https://doi.org/10.1090/S0002-9947-1980-0558185-4
Ya.L. Geronimus, On some extremal problems in the space Lσp, Mat. Sb. (N.S.), 31(73), pp. 3-26, 1952 (in Russian).
Gonchär, A.A., On convergence of Padé approximants for certain classes of meromorphic functions, Mat. Sb. J., 97, 1975, English translation: Math. USSR-Sb. 26. DOI: https://doi.org/10.1070/SM1975v026n04ABEH002494
Kaliaguine, V. and Benzine, R., Sur la formule asymptotique des polynômes orthogonaux associés à une mesure concentrée sur un contour plus une partie discrète finie, [An asymptotic formula for orthogonal polynomials associated with a measure concentrated on a contour plus a finite discrete part], Bull. Soc. Math. Belg. Ser. B, 41, no. 1, pp. 29-46, 1989 (in French).
Kaliaguine, V., On Asymptotics of Lp extremal polynomials on a complex curve (0
https://doi.org/10.1006/jath.1993.1063
DOI: https://doi.org/10.1006/jath.1993.1063Khaldi, R. and Benzine, R., On a generalization of an asymptotic formula of orthogonal polynomials, Int. J. Appl. Math, 4, no. 3, pp. 261-274, 2000.
Khaldi, R. and Benzine, R., Asymptotics for orthogonal polynomials off the circle, J. Appl. Math., JAM 2004:1, pp. 37-53, 2004, https://doi.org/10.1155/s1110757x04304092 DOI: https://doi.org/10.1155/S1110757X04304092
Khaldi, R., Strong asymptotics for Lp extremal polynomials off a complex curve, Journal of Applied Mathematics, 5, pp. 371-378, 2004, https://doi.org/10.1155/s1110757x0430906x DOI: https://doi.org/10.1155/S1110757X0430906X
Koosis, P., Introduction to Hp Spaces, London Math. Soc. Lecture Notes Series, 40, Cambridge University Press, Cambridge, 1980.
Korovkine, P.P., On orthogonal polynomials on a closed curve, Math. Sbornik, 9, pp. 469-484, 1941 (in Russian).
Laskri, Y. and Benzine, R., Asymptotic behavior of L_{p} extremal polynomials corresponding to a measure with infinite discrete part off a curve, FAAT, Maratea, Italie, June 2004.
Li, X. and Pan, K., Asymptotics for Lp extremal polynomials on the unit circle, J. Approx. Theory, 67, pp. 270-283, 1991, https://doi.org/10.1016/0021-9045(91)90003-s DOI: https://doi.org/10.1016/0021-9045(91)90003-S
Li, X. and Pan, K., Asymptotic behavior of orthogonal polynomials corresponding to measure with discrete part off the unit circle, J. Approx. Theory, 79, pp. 54-71, 1994, https://doi.org/10.1006/jath.1994.1113 DOI: https://doi.org/10.1006/jath.1994.1113
Lubinsky, D.S. and Saff, E.B., Strong asymptotics for L^{p}-extremal polynomials (p>1) associated with weight on [-1,+1], Lecture Notes in Math. 1287, pp. 83-104, 1987, https://doi.org/10.1007/bfb0078899 DOI: https://doi.org/10.1007/BFb0078899
Lubinsky, D.S. and Saff, E.B., Szegö asymptotics for non Szegö weights on [-1,+1], ICM 89-007.
Lubinsky, D.S. and Saff, E.B., Strong asymptotics for extremal polynomials associated with weights on (-∞,+∞), Lecture Notes in Mathematics, 1305, Springer-Verlag, Berlin, 1988. DOI: https://doi.org/10.1007/BFb0082413
Lubinsky, D.S. and Saff, E.B., Sufficient Conditions for asymptotics associated with weighted extremal problems on R, Rocky Mountain J. Math., 19, pp. 261-269, 1989, https://doi.org/10.1216/rmj-1989-19-1-261 DOI: https://doi.org/10.1216/RMJ-1989-19-1-261
Nikishin, E.M., The discrete Sturm-liouville operator and some problems of function theory, Trudy Sem. Petrovsk. 10, pp. 3-77, 1984 (in Russian), English Transl. in Soviet Math., 35, pp. 2679-2744, 1987, https://doi.org/10.1007/bf01119188 DOI: https://doi.org/10.1007/BF01119188
Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1968.
Smirnov, V.I. and Lebedev, N. A., The Constructive Theory of Functions of a Complex Variable, Nauka, Moscow, 1964 (in Russian); M.I.T. Press, Cambridge, MA, 1968 (Engl. transl.).
Smirnov, V.J., Sur la théorie des polynômes orthogonaux à une variable complexe, Journal de la Société Physico-Mathématique de Leningrad, 2,pp. 155-179, 1928.
Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., American Math. Society, Providence, RI, 1975.
Szegö, G. and Grenander, U., Toeplitz forms and their applications, Berkley-Los Angeles, 1958, https://doi.org/10.1063/1.3062237 DOI: https://doi.org/10.1063/1.3062237
Widom, H., Extremal polynomials associated with a system of curves and arcs in the complex plane, Adv. Math., 3, pp. 127-232, 1969, https://doi.org/10.1016/0001-8708(69)90005-x DOI: https://doi.org/10.1016/0001-8708(69)90005-X
Yuditskii, P. and Peherstorfer, F., Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points, Proceedings of the American Mathematical Society, 129, 11, pp. 3213-3220, https://doi.org/10.1090/s0002-9939-01-06205-0 DOI: https://doi.org/10.1090/S0002-9939-01-06205-0
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.