Singular integral operators. The case of an unlimited contour

Authors

  • V. Neaga State University of Moldova, Chisinau, Republic of Moldova

DOI:

https://doi.org/10.33993/jnaat342-802

Keywords:

Lyapunov closed curves, Noetherian singular integral, piecewise Lyapunov contour, singular integral equations, singular operators with Cauchy kernel singular operators with shift
Abstract views: 246

Abstract

Let Γbe a closed or unclosed unlimited contour, a shift α(t) maps homeomorphicly the contour Γ onto itself with preserving or reversing the direction on Γ and also satisfies the conditions: for some natural n2, αn(t)t, and αj(t)t for 1j<n. In this work we study subalgebra Σ of algebraL(Lp(Γ,ρ)), which contains all operators of the form(Mφ)(t)=k=0n1{ak(t)φ(αk(t))+bk(t)πiΓφ(τ)ταk(t)dτ}with piecewise-continuous coefficients. The existence of such an isomorphism between Σ and some algebra A of singular operators with Cauchy kernel that an arbitrary operator from Σ and its image are Noetherian or not Noetherian simultaneously is proved. It allows to introduce the concept of a symbol for all operators from Σ and, using the known results for algebra A, in terms of a symbol to receive conditions of Noetherian property.

Downloads

References

Böttcher A., Gohberg I., Karlovich Yu., Krupnik N., eds., Banach algebras generated by idempotents and applications, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 90, pp. 19-54, 1996, https://doi.org/10.1007/978-3-0348-9040-3_2 DOI: https://doi.org/10.1007/978-3-0348-9040-3_2

Gohberg I., Krupnik N., Banach algebras of singular integral operators with piecewise continuous coefficients. General contour and weight, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 17, pp. 322-337, 1993, https://doi.org/10.1007/bf01200289 DOI: https://doi.org/10.1007/BF01200289

Gohberg I., Krupnik N., Extension theorems for Fredholm and invertibility symbols, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 16, pp. 514-529, 1993, https://doi.org/10.1007/bf01205291 DOI: https://doi.org/10.1007/BF01205291

Gohberg I., Krupnik N., Extension theorems for invertibility symbols in Banach algebras, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 15, pp. 991-1010, 1992, https://doi.org/10.1007/bf01203124 DOI: https://doi.org/10.1007/BF01203124

Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Moskva-Leningrad, Gos-tekh-iz-dat, 1952.

Karanetyants N.K., Samko S.G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Rostov, Izd-vo Rostovskogo un-ta, 1988.

Khvedelidze B.V., Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralinye uravneniya i nekotorye ikh prilozheniya, Trudy Tbilisskogo mat. in-ta AN Gruz. SSR, XXII, s. 3-158, 1957.

Krupnik N., Banach algebras with symbol and singular integral operators, Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 26, 1987, https://doi.org/10.1007/978-3-0348-5463-4_5 DOI: https://doi.org/10.1007/978-3-0348-5463-4

Krupnik N.Ya., Nyaga V.I., O singulyarnykh operatorakh so sdvigom v sluchae kusochno-lya-pu-nov-skogo kontura, Soobshchenie AN Gruz. SSR, 76, no. 1, s. 25-28, 1974.

Litvinchuk G.S., Kraevye zadachi i singulyarnye integralinye uravneniya so sdvigom, Moskva, Nauka, 1977.

Neaga V., Asupra algebrei de operatori singulari cu coeficienţi continui pe porţiuni, Analele ştiinţifice ale USM, pp. 11-16, 1997.

Nyaga V., Singular integral operators. II. The case of a piecewise Lyapunov contour, Analele ştiinţifice ale USM, p. 202-213, 1999.

Nyaga V.I.. Singulyarnye integralinye operatory so sdvigom vdoli neogranichennogo kontura, Izvestiya vuzov, Ser. mat., no 5, s. 35-42, 1982.

Nyaga V.I., Kriterii neterovosti singulyarnykh integralinykh uravnenii s drobno-lineinym sdvigom v prostranstve Lp, Izvestiya AN MSSR, Matematika, no. 3, s. 14-18, 1990.

Nyaga V.I., O simvole singulyarnykh integralinykh operatorov s obratnym sdvigom na R Algebraicheskie struktury i geometriya. Kishinev, Shtiintsa, s. 84-92, 1991.

Nyaga V.I., Singulyarnye integralinye operatory s oboshchennym Karlemanovskim sdvigom v sluchae neogranichennogo kontura, Izvestiya AN RM, Matematika, no 2, s. 87-100, 1997.

Nyaga V.I., Laĭla, M., Ob algebre singulyarnykh integralnykh operatorov s obratnym sdvigom v prostranstve Lp(R,ρ), Izvestiya AN RM, Matematika, 3, s. 46-55, 1992.

Nyaga V., The simbol of singular integral operators with congugation the case of piecewise Lyapunov contour, American Math. Society, 27, no. 1, pp. 173-176, 1983.

Nyaga, V.I., Usloviya neterovosti singulyarnykh integralinykh operatorov s sopryazheniem v sluchae kusochno-lyapunovskogo kontura, Issledovaniya po funktsionalinomu analizu i differentsialinym uravneniyam. Kishinev, Shtiintsa, s. 90-102, 1984.

Nyaga V.I., Vozmushcheniya singulyarnykh operatorov s kusochno-nepreryvnymi koe1ffitsientami, Issledovaniya po funktsionalinomu analizu i differentsialinym uravneniyam, Kishinev, Shtiintsa, s. 64-68, 1978.

Vinogradova G.Yu., Singulyarnye integralinye operatory na osi s drobno-lineinym sdvigom v prostranstvakh s vesom, Izvestiya vuzov, Ser. mat., no. 3, s. 67-72, 1979.

Zverovich E1.I., Litvinchuk G.S. , Kraevye zadachi so sdvigom dlya analiticheskikh funktsii singulyarnye funktsionalinye uravneniya, UMN, 23, vyp. 3, s. 67-121, 1968.

Downloads

Published

2005-08-01

Issue

Section

Articles

How to Cite

Neaga, V. (2005). Singular integral operators. The case of an unlimited contour. Rev. Anal. Numér. Théor. Approx., 34(2), 151-168. https://doi.org/10.33993/jnaat342-802