Iterated boolean sums of Bernstein and related operators
DOI:
https://doi.org/10.33993/jnaat351-1018Keywords:
Bernstein operators and the associated semigroup, Boolean sumsAbstract
Let \((T(t))_{t\geq0}\) be the semigroup associated with the classical Bernstein operators \((B_{n})_{n\geq1}\) on \(C[0,1]\). We obtain rates of convergence for iterated boolean sums of the operators \(T\left( \frac{1}{n}\right) .\)Downloads
References
Agrawal, P.N. and Kasana, H.S., On the iterative combinations of Bernstein polynomials, Demonstratio Math., 17, pp. 777-783, 1984. DOI: https://doi.org/10.1515/dema-1984-0320
Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin - New York, 1994. DOI: https://doi.org/10.1515/9783110884586
Felbecker, G., Linearkombinationen von iterierten Bernsteinoperatoren, Manuscripta Math., 29, pp. 229-248, 1979. DOI: https://doi.org/10.1007/BF01303629
Gonska, H.H. and Zhou, X.L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comp. Appl. Math., 53, pp. 21-31, 1994. DOI: https://doi.org/10.1016/0377-0427(92)00133-T
Mastroianni, G. and Occorsio, M.R., Una generalizzazione dell'operatore di Bernstein, Rend. Accad. Sci. Mat. Fis. Nat. Napoli, 44, pp. 151-169, 1977.
Micchelli, C.A., The saturation class and iterates of the Bernstein polynomials, J. Approximation Theory, 8, pp. 1-18, 1973. DOI: https://doi.org/10.1016/0021-9045(73)90028-2
Rasa, I., Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, Rev. Anal. Numér. Théor. Approx., 9, pp. 261-268, 1980, http://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art12
Rasa, I., Estimates for the semigroup associated with Bernstein operators, Rev. Anal. Numér. Théor. Approx., 33, 243-245, 2004, http://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no2-art17
Vladislav, T. and Rasa, I., Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureşti, 1999.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.