Iterated boolean sums of Bernstein and related operators


  • Ioan Raşa Technical University of Cluj-Napoca, Romania


Bernstein operators and the associated semigroup, Boolean sums


Let \((T(t))_{t\geq0}\) be the semigroup associated with the classical Bernstein operators \((B_{n})_{n\geq1}\) on \(C[0,1]\). We obtain rates of convergence for iterated boolean sums of the operators \(T\left( \frac{1}{n}\right) .\)


Download data is not yet available.


Agrawal, P.N. and Kasana, H.S., On the iterative combinations of Bernstein polynomials, Demonstratio Math., 17, pp. 777-783, 1984.

Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin - New York, 1994.

Felbecker, G., Linearkombinationen von iterierten Bernsteinoperatoren, Manuscripta Math., 29, pp. 229-248, 1979.

Gonska, H.H. and Zhou, X.L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comp. Appl. Math., 53, pp. 21-31, 1994.

Mastroianni, G. and Occorsio, M.R., Una generalizzazione dell'operatore di Bernstein, Rend. Accad. Sci. Mat. Fis. Nat. Napoli, 44, pp. 151-169, 1977.

Micchelli, C.A., The saturation class and iterates of the Bernstein polynomials, J. Approximation Theory, 8, pp. 1-18, 1973.

Rasa, I., Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, Rev. Anal. Numér. Théor. Approx., 9, pp. 261-268, 1980,

Rasa, I., Estimates for the semigroup associated with Bernstein operators, Rev. Anal. Numér. Théor. Approx., 33, 243-245, 2004,

Vladislav, T. and Rasa, I., Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureşti, 1999.




How to Cite

Raşa, I. (2006). Iterated boolean sums of Bernstein and related operators. Rev. Anal. Numér. Théor. Approx., 35(1), 111–115. Retrieved from