Best approximation in spaces with asymmetric norm


  • Ştefan Cobzaş "Babeş Bolyai" University, Cluj-Napoca, Romania
  • Costică Mustăţa Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania



spaces with asymmetric norm, best approximation, Hahn-Banach theorem, characterization of best approximation
Abstract views: 264


In this paper we shall present some results on spaces with asymmetric seminorms, with emphasis on best approximation problems in such spaces.


Download data is not yet available.


Alegre, C. Ferrer, J. and Gregori, V., Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math., 28, no. 7, pp. 929-937, 1997.

-, On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar., 82, no. 4, pp. 325-330, 1999.

Alimov, A. R., The Banach-Mazur theorem for spaces with nonsymmetric distance, Uspekhi Mat. Nauk, 58, no. 2, pp. 159-160, 2003. DOI:

Babenko, V. F., Nonsymmetric approximations in spaces of summable functions, Ukrain. Mat. Zh., 34, no. 4, pp. 409-416, 538, 1982.

-, Nonsymmetric extremal problems of approximation theory, Dokl. Akad. Nauk SSSR, 269, no. 3, pp. 521-524, 1983.

- , Duality theorems for certain problems of the theory of approximation, Current problems in real and complex analysis, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, pp. 3-13, 148, 1984.

Borodin, P. A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 329-337, 2001. DOI:

Cobzaş, S., Phelps type duality results in best approximation, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 29-43, 2002.

Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27, no. 3, 275-296, 2004, DOI:

Cobzaş, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., no. 16, 2585-2608, 2005, DOI:

Cobzaş, S. and Mustăţa, C., Extension of bilinear functionals and best approximation in 2-normed spaces, Studia Univ. Babeş-Bolyai, Mathematica, 43, pp. 1-13, 1998.

-, Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 39-50, 2004,

De Blasi, F. S. and Myjak, J., On a generalized best approximation problem, J. Approx. Theory, 94, no. 1, pp. 54-72, 1998, DOI:

Dolzhenko, E. P. and Sevastyanov, E. A., Approximations with a sign-sensitive weight (existence and uniqueness theorems), Izv. Ross. Akad. Nauk Ser. Mat., 62, no. 6, pp. 59-102, 1998. DOI:

-, Sign-sensitive approximations, J. Math. Sci. (New York), 91, no. 5, pp. 3205-3257, 1998, DOI:

-, Approximation with a sign-sensitive weight (stability, applications to snake theory and Hausdorff approximations), Izv. Ross. Akad. Nauk Ser. Mat., 63, no. 3, pp. 77-118, 1999 DOI:

Ferrer, J., Gregori, V. and Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, no. 3, pp. 877-884, 1993, DOI:

García-Raffi, L. M., Romaguera, S. and Sánchez Pérez, E. A., Extensions of asymmetric norms to linear spaces, Rend. Istit. Mat. Univ. Trieste, 33, nos. 1-2, 113-125, 2001.

-, The bicompletion of an asymmetric normed linear space, Acta Math. Hungar., 97, no. 3, pp. 183-191, 2002, DOI:

-, Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Modelling, 36, nos. 1-2, pp. 1-11, 2002, DOI:

-, The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83- 96, 2003, DOI:

-, On Hausdorff asymmetric normed linear spaces, Houston J. Math., 29, no. 3, pp. 717-728 (electronic), 2003.

Krein, M. G. and Nudelman, A. A., The Markov Moment Problem and Extremum Problems, Nauka, Moscow, 1973 (in Russian), English translation: American Mathematical Society, Providence, R.I., 1977, DOI:

Chong Li, On well posed generalized best approximation problems, J. Approx. Theory, 107, no. 1, pp. 96-108, 2000, DOI:

Chong Li and Renxing Ni, Derivatives of generalized distance functions and existence of generalized nearest points, J. Approx. Theory, 115, no. 1, pp. 44-55, 2002, DOI:

Mohebi, H., On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory, 107, no. 1, pp. 87- 95, 2000, DOI:

-, Pseudo-Chebyshev subspaces in L[sp] 1, Korean J. Comput. Appl. Math., 7, no. 2, pp. 465-475, 2000. DOI:

-, On pseudo-Chebyshev subspaces in normed linear spaces, Math. Sci. Res. Hot-Line, 5, no. 9, pp. 29-45, 2001.

-, Quasi-Chebyshev subspaces in dual spaces, J. Nat. Geom., 20, nos. 1-2, pp. 33-44, 2001.

-, On pseudo-Chebyshev subspaces in normed linear spaces, J. Nat. Geom., 24, nos. 1-2, pp. 37-56, 2003.

Mohebi, H. and Rezapour, Sh., On weak compactness of the set of extensions of a continuous linear functional, J. Nat. Geom., 22, nos. 1-2, pp. 91-102, 2002.

Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61-67, 2001,

-, On the extremal semi-Lipschitz functions, Rev. Anal. Numér. Théor. Approx., 31, no. 1, pp. 103-108, 2002,

-, A Phelps type theorem for spaces with asymmetric norms, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18, no. 2, pp. 275-280, 2002.

-, On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Numer. Theor. Approx., 32, no. 2, pp. 187-192, 2003,

Renxing Ni, Existence of generalized nearest points, Taiwanese J. Math., 7, no. 1, pp. 115-128, 2003, DOI:

Phelps, R. R., Uniqueness of Hahn-Banach extensions and best approximations, Trans. Amer. Marth Soc., 95, pp. 238-255, 1960, DOI:

Rezapour, Sh., ε-weakly Chebyshev subspaces of Banach spaces, Anal. Theory Appl., 19, no. 2, pp. 130-135, 2003, DOI:

Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, no. 2, pp. 292-301, 2000, DOI:

Romaguera, S. and Schellekens, M., Duality and quasi-normability for complexity spaces, Appl. Gen. Topol., 3, no. 1, pp. 91-112, 2002, DOI:

Simonov, B. V., On the element of best approximation in spaces with nonsymmetric quasinorm, Mat. Zametki, 74, no. 6, pp. 902-912, 2003, DOI:

Singer, I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Academiei Romane and Springer-Verlag, Bucharest-New York-Berlin, 1970. DOI:

Zanco, C. and Zucchi, A., Moduli of rotundity and smoothness for convex bodies, Bolletino U. M. I., (7), 7-B, pp. 833-855, 1993.




How to Cite

Cobzaş, Ştefan, & Mustăţa, C. (2006). Best approximation in spaces with asymmetric norm. Rev. Anal. Numér. Théor. Approx., 35(1), 17–31.