Double inequalities of Newton's quadrature rule

Authors

  • Marius Heljiu University of Petrosani, Romania

Keywords:

Newton's inequality, double integral inequalities, numerical integration

Abstract

In this paper double inequalities of Newton's quadrature rule are given.

Downloads

Download data is not yet available.

References

Cerone, P., Three points rules in numerical integration, Non. Anal. Theor. Meth. Appl., 47 (4), pp. 2341-2352, 2001, https://doi.org/10.1016/s0362-546x(01)00358-3

Cerone, P. and Dragomir, S. S., Midpoint-type Rules from an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, pp. 135-200, 2000,https://doi.org/10.1201/9780429123610-4

Cerone, P. and Dragomir, S. S., Trapezoidal-type Rules from an Inequalities Point of View, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, pp. 65-34, 2000, https://doi.org/10.1201/9781420036053.ch3

Dragomir, S. S., Agarwal, R. P. and Cerone, P., On Simpson's inequality and applications, J. Inequal. Appl., 5, pp. 533-579, 2000.

Dragomir, S. S., Pecarić, J. and Wang, S., The unified treatment of trapezoid, Simpson and Ostrowski type inequalities for monotonic mappings and applications, Math. Comput. Modelling, 31, pp. 61-70, 2000, https://doi.org/10.1016/s0895-7177(00)00046-7

Ionescu, D. V., Cuadraturi numerice, Editura Tehnică, Bucureşti, 1957.

Ujević, N., Some double integral inequalities and applications, Acta Math. Univ. Comenianae, 71 (2), pp. 187, 2002.

Ujević, N., Double integral inequalities of simpson type and applications, J. Appl. Math. & Computing, 14, (1-2), pp. 213-223, 2004, https://doi.org/10.1007/bf02936109

Downloads

Published

2006-08-01

How to Cite

Heljiu, M. (2006). Double inequalities of Newton’s quadrature rule. Rev. Anal. Numér. Théor. Approx., 35(2), 141–146. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2006-vol35-no2-art2

Issue

Section

Articles