Iterative functional-differential system with retarded argument

Authors

  • Diana Otrocol Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat352-841

Keywords:

iterative functional-differential equation, weakly Picard operator, delay, data dependence
Abstract views: 226

Abstract

Existence, uniqueness and data dependence results of solution to the Cauchy problem for iterative functional-differential system with delays are obtained using weakly Picard operator theory.

Downloads

Download data is not yet available.

References

Coman, Gh., Pavel, G., Rus, I., Rus, I. A., Introducere în teoria ecuaţiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.

Hale, J., Theory of functional Differential Equations, Springer-Verlag, Berlin, 1977. DOI: https://doi.org/10.1007/978-1-4612-9892-2

Mureşan, V., Functional-Integral Equations, Editura Mediamira, Cluj-Napoca, 2003.

Kuang, Y., Delay differential equations with applications to population dynamics, Academic Press, Boston, 1993, https://doi.org/10.1016/s0076-5392(08)x6164-8 DOI: https://doi.org/10.1016/S0076-5392(08)X6164-8

Otrocol, D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), no. 1, pp. 61-68, 2006.

Otrocol, D., Smooth dependence on parameters for some Lotka-Volterra system with delays (to appear).

Rus, I. A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.

Rus, I. A., Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, pp. 769-773, 1993.

Rus, I. A., Functional-differential equation of mixed type, via weakly Picard operators, Seminar of Fixed Point Theory, Cluj-Napoca, 3, pp. 335-346, 2002.

Rus, I. A. and Egri, E., Boundary value problems for iterative functional-differential equations, Studia Univ. "Babeş-Bolyai", Matematica, 51 (2) pp. 109-126, 2006.

Si, J. G., Li, W. R. and Cheng, S. S., Analytic solution of on iterative functional-differential equation, Comput. Math. Appl., 33 (6), pp. 47-51, 1997, https://doi.org/10.1016/s0898-1221(97)00030-8 DOI: https://doi.org/10.1016/S0898-1221(97)00030-8

Stanek, S., Global properties of decreasing solutions of equation x′(t)=x(x(t))+x(t), Funct. Diff. Eq., 4 (1-2), pp. 191-213, 1997.

Şerban, M. A., Fiber ϕ-contractions, Studia Univ. "Babeş-Bolyai", Mathematica, 44 (3), pp. 99-108, 1999.

Downloads

Published

2006-08-01

How to Cite

Otrocol, D. (2006). Iterative functional-differential system with retarded argument. Rev. Anal. Numér. Théor. Approx., 35(2), 147–160. https://doi.org/10.33993/jnaat352-841

Issue

Section

Articles