\(A\)-statistical convergence for a class of positive linear operators
DOI:
https://doi.org/10.33993/jnaat352-842Keywords:
\(A\)-statistical convergence, positive linear operators, modulus of continuity, the Lipschitz classAbstract
In this paper we introduce a sequence of positive linear operators defined on the space \(C[0,a]\) \((0<a<1)\) and provide an approximation theorem for these operators via the concept of \(A\)-statistical convergence. We also compute the rates of convergence of these approximation operators by means of the first and second order modulus of continuity and the elements of the Lipschitz class. Furthermore, by defining the generalization of \(r\)-th order of these operators we show that the similar approximation properties are preserved on \(C[0,a].\)Downloads
References
Agratini, O., Korovkin type error estimates for Meyer-König and Zeller operators, Math. Ineq. Appl., 4 (1), pp. 119-126, 2001, https://doi.org/10.7153/mia-04-09 DOI: https://doi.org/10.7153/mia-04-09
Altomare, F. and Campiti, M., Korovkin Type Approximation Theory and Its Applications, de Gruyter Stud. Math., 17, de Gruyter, Berlin, 1994, https://doi.org/10.1515/9783110884586 DOI: https://doi.org/10.1515/9783110884586
Bleimann, G., Butzer, P. L. and Hahn, L., A Bernstein-type operator approximating continuous functions on the semi-axis, Math. Proc., 83 (3), pp. 255-262, 1980, https://doi.org/10.1016/1385-7258(80)90027-x DOI: https://doi.org/10.1016/1385-7258(80)90027-X
Boos, J., Classical and Modern Methods in Summability, Oxford University Press, New York, 2000.
Bojanic, R. and Cheng, F., Estimates for the rate of approximation of functions of bounded variation by Hermit-Fejer polynomials, Proceedings of the Conference of Canadian Math. Soc., 3, pp. 5-17, 1983.
Bojanic, R. and Khan, M. K., Summability of Hermit-Fejer interpolation for functions of bounded variation, J. Natural Sci. Math, 32 (1), pp. 5-10, 1992.
Butzer, P. L. and Berens, H., Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin-Heidelberg-New York, 1967, https://doi.org/10.1007/978-3-642-46066-1 DOI: https://doi.org/10.1007/978-3-642-46066-1
Cheney, E. W. and Sharma, A., Bernstein power series, Canad. J. Math., 16, pp. 241-253, 1964, https://doi.org/10.4153/cjm-1964-023-1 DOI: https://doi.org/10.4153/CJM-1964-023-1
Chlodovsky, I., Sur la representation des fonctions discontinuous par les polynômes de M. S. Bernstein, Fund. Math., 13, pp. 62-72, 1929, https://doi.org/10.4064/fm-13-1-62-72 DOI: https://doi.org/10.4064/fm-13-1-62-72
Doğru, O., Approximation order and asymptotic approximation for generalized Meyer-König and Zeller operators, Math. Balkanica, N. S., 12 (3-4), pp. 359-368, 1988,
Doğru, O., Duman, O. and Orhan, C., Statistical approximation by generalized Meyer-König and Zeller type operators, Stud. Sci. Math. Hungar., 40, pp. 359-371, 2003, https://doi.org/10.1556/sscmath.40.2003.3.9 DOI: https://doi.org/10.1556/sscmath.40.2003.3.9
Duman, O., Khan, M. K. and Orhan, C., A-statistical convergence of approximating operators, Math. Ineq. Appl., 6 (4), pp. 689-699, 2003, https://doi.org/10.7153/mia-06-62 DOI: https://doi.org/10.7153/mia-06-62
Duman, O. and Orhan, C., Statistical approximation by positive linear operators, Studia Math., 161 (2), pp. 187-197, 2003, https://doi.org/10.4064/sm161-2-6 DOI: https://doi.org/10.4064/sm161-2-6
Duman, O. and Orhan, C., Rates of A-statistical convergence of positive linear operators, Appl. Math. Letters, 18, pp. 1339-1344, 2005, https://doi.org/10.1016/j.aml.2005.02.029 DOI: https://doi.org/10.1016/j.aml.2005.02.029
Fast, H., Sur la convergence statistique, Colloq. Math., 2, pp. 241-244, 1951, https://doi.org/10.4064/cm-2-3-4-241-244 DOI: https://doi.org/10.4064/cm-2-3-4-241-244
Freedman, A. R. and Sember, J. J., Densities and summability, Pacific J. Math., 95, pp. 293-305, 1981, https://doi.org/10.2140/pjm.1981.95.293 DOI: https://doi.org/10.2140/pjm.1981.95.293
Fridy, J. A., On statistical convergence, Analysis, 5, pp. 301-313, 1985, https://doi.org/10.1524/anly.1985.5.4.301 DOI: https://doi.org/10.1524/anly.1985.5.4.301
Fridy, J. A. and Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125, pp. 3625-3631, 1997, https://doi.org/10.1090/s0002-9939-97-04000-8 DOI: https://doi.org/10.1090/S0002-9939-97-04000-8
Fridy, J. A. and Miller, H. I., A matrix characterization of statistical convergence, Analysis, 11, pp. 59-66, 1991, https://doi.org/10.1524/anly.1991.11.1.59 DOI: https://doi.org/10.1524/anly.1991.11.1.59
Gadjiev, A. D. and Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (1), pp. 129-138, 2002, https://doi.org/10.1216/rmjm/1030539612 DOI: https://doi.org/10.1216/rmjm/1030539612
Khan, M. K., On the rate of convergence of Bernstein power series for functions of bounded variation, J. Approx. Theory, 57 (1), pp. 90-103, 1989,https://doi.org/10.1016/0021-9045(89)90086-5 DOI: https://doi.org/10.1016/0021-9045(89)90086-5
Kirov, G. and Popova, L., A generalization of the linear positive operators, Math. Balkanica, 7, pp. 149-162, 1993.
Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 13, pp. 77-83, 1993, https://doi.org/10.1524/anly.1993.13.12.77 DOI: https://doi.org/10.1524/anly.1993.13.12.77
Korovkin, P. P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
Meyer-König, W. and Zeller, K., Bernsteinsche potenzreihen, Studia Math., 19, pp. 89-94, 1960, https://doi.org/10.4064/sm-19-1-89-94 DOI: https://doi.org/10.4064/sm-19-1-89-94
Miller, H. I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347, pp. 1811-1819, 1995,https://doi.org/10.1090/s0002-9947-1995-1260176-6 DOI: https://doi.org/10.1090/S0002-9947-1995-1260176-6
Niven, I., Zuckerman, H. S. and Montgomery, H., An Introduction to the Theory of Numbers, 5th Edition, Wiley, New York, 1991, https://doi.org/10.2307/3618659 DOI: https://doi.org/10.2307/3618659
Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj), 10, pp. 49-54, 1934.
Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures et Appl., 13 (8), pp. 1173-1194, 1968.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.