Bilateral approximations of the roots of scalar equations by Lagrange-Aitken-Steffensen method of order three
DOI:
https://doi.org/10.33993/jnaat352-843Keywords:
Aitken-Steffenssen methods, Lagrange inverse interpolationAbstract
We study the monotone convergence of two general methods of Aitken-Steffenssen type. These methods are obtained from the Lagrange inverse interpolation polynomial of degree two, having controlled nodes. The obtained results provide information on controlling the errors at each iteration step.Downloads
References
Balázs, M., A bilateral approximating method for finding the real roots of real equations, Rev. Anal. Numér. Théor. Approx., 21 (2), pp. 111-117, 1992.
Casulli, V., Trigiante, D., The convergence order for iterative multipoint procedures, Calcolo, 13 (1), pp. 25-44, 1997, https://doi.org/10.1007/bf02576646 DOI: https://doi.org/10.1007/BF02576646
Costabile, F., Gualtieri, I. M., Luceri, R., A new iterative method for the computation of the solution of nonlinear equations, Numer. Algorithms, 28, pp. 87-100, 2001, https://doi.org/10.1023/a:1014078328575 DOI: https://doi.org/10.1023/A:1014078328575
Frontini, M., Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations, Calcolo, 40, pp. 109-119, 2003. DOI: https://doi.org/10.1007/s100920300006
Grau, M., An improvement to the computing of nonlinear equation solutions, Numer. Algorithms., 34, pp. 1-12, 2003, https://doi.org/10.1023/a:1026100500306 DOI: https://doi.org/10.1023/A:1026100500306
Ostrowski, A., Solution of Equations in Euclidian and Banach Spaces, Academic Press, New York and London, 1973.
Păvăloiu, I., Optimal efficiency index for iterative methods of interpolatory type, Computer Science Journal of Moldova, 1 (5), pp. 20-43, 1997.
Păvăloiu, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1-2), pp. 69-82, 1995, https://doi.org/10.1007/bf02576543 DOI: https://doi.org/10.1007/BF02576543
Păvăloiu, I., Optimal problems concerning interpolation methods of solution of equations, Publications de L'Institut Mathématique, 52 (66), pp. 113-126, 1992.
Păvăloiu, I., Optimal effiency index of a class of Hermite iterative methods, with two steps, Rev. Anal. Numér. Théor. Approx., 29 (1), pp. 83-89, 2000.
Păvăloiu, I., Local convergence of general Steffensen type methods, Rev. Anal. Numér. Théor. Approx., 33 (1), pp. 79-86, 2004.
Păvăloiu, I. and Pop, N., Interpolation and Applications, Risoprint, Cluj-Napoca, 2005 (in Romanian).
Păvăloiu, I., On a Steffensen-Hermite-type Method for approximating the solution of nonlinear equations, Rev. Anal. Numér. Théor. Approx., 25 1, pp. 87-94, 2006.
Păvăloiu, I., Bilateral approximation of solutions of equations by order-three Steffensen type methods, Studia Univ. "Babeş-Bolyai", Mathematica, Vol. LI, no. 3, pp. 105-114, 2006.
Traub, J. F., Iterative Methods for Solutions of Equations, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1964.
Turowicz, B. A., Sur les derivées d'ordre supérieur d'une function inverse, Ann. Polon. Math., 8, pp. 265-269, 1960, https://doi.org/10.4064/ap-8-3-265-269 DOI: https://doi.org/10.4064/ap-8-3-265-269
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.