Fixed points and integral inclusions

Authors

  • Adrian Petruşel “Babes-Bolyai” University Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat352-844

Keywords:

fixed point, φ-contraction, multivalued operator, integral inclusion
Abstract views: 239

Abstract

The aim of this paper is to present, as applications of some fixed point theorems, existence results for integral equations and inclusions.

Downloads

References

Aubin, J.-P. and Frankowska, H., Set-valued analysis, Birkhauser, Basel, 1990.

Biles, D.C., Robinson, M.P. and Spraker, J.S., Fixed point approaches to the solution of integral inclusions, Topol. Meth. Nonlinear Anal., 25, pp. 297-311, 2005, https://doi.org/10.12775/tmna.2005.015 DOI: https://doi.org/10.12775/TMNA.2005.015

Dugundji J. and Granas, A., Fixed point theory, Springer-Verlag, Berlin, 2003,https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8

Hu, S. and Papageorgiou, N.S., Handbook of multivalued analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999. DOI: https://doi.org/10.1007/978-1-4615-6359-4

Petruşel, A., Operatorial inclusions, House of the Book of Science, 2002.

Rus, I.A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58, pp. 191-219, 2003.

Rus, I.A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52, pp. 1947-1959, 2003, https://doi.org/10.1016/s0362-546x(02)00288-2 DOI: https://doi.org/10.1016/S0362-546X(02)00288-2

Rybinski, L., On Carathédory type selections, Fund. Math., 125, pp. 187-193, 1985, https://doi.org/10.4064/fm-125-3-187-193 DOI: https://doi.org/10.4064/fm-125-3-187-193

Wegrzyk, R., Fixed point theorems for multifunctions and their applications to functional equations, Disscus. Math., 201, 1982.

Downloads

Published

2006-08-01

Issue

Section

Articles

How to Cite

Petruşel, A. (2006). Fixed points and integral inclusions. Rev. Anal. Numér. Théor. Approx., 35(2), 183-188. https://doi.org/10.33993/jnaat352-844