Fixed points and integral inclusions


  • Adrian Petruşel “Babes-Bolyai” University Cluj-Napoca, Romania


fixed point, \(\varphi\)-contraction, multivalued operator, integral inclusion


The aim of this paper is to present, as applications of some fixed point theorems, existence results for integral equations and inclusions.


Download data is not yet available.


Aubin, J.-P. and Frankowska, H., Set-valued analysis, Birkhauser, Basel, 1990.

Biles, D.C., Robinson, M.P. and Spraker, J.S., Fixed point approaches to the solution of integral inclusions, Topol. Meth. Nonlinear Anal., 25, pp. 297-311, 2005,

Dugundji J. and Granas, A., Fixed point theory, Springer-Verlag, Berlin, 2003,

Hu, S. and Papageorgiou, N.S., Handbook of multivalued analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999.

Petruşel, A., Operatorial inclusions, House of the Book of Science, 2002.

Rus, I.A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58, pp. 191-219, 2003.

Rus, I.A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52, pp. 1947-1959, 2003,

Rybinski, L., On Carathédory type selections, Fund. Math., 125, pp. 187-193, 1985,

Wegrzyk, R., Fixed point theorems for multifunctions and their applications to functional equations, Disscus. Math., 201, 1982.




How to Cite

Petruşel, A. (2006). Fixed points and integral inclusions. Rev. Anal. Numér. Théor. Approx., 35(2), 183–188. Retrieved from