Fixed points and integral inclusions
DOI:
https://doi.org/10.33993/jnaat352-844Keywords:
fixed point, \(\varphi\)-contraction, multivalued operator, integral inclusionAbstract
The aim of this paper is to present, as applications of some fixed point theorems, existence results for integral equations and inclusions.Downloads
References
Aubin, J.-P. and Frankowska, H., Set-valued analysis, Birkhauser, Basel, 1990.
Biles, D.C., Robinson, M.P. and Spraker, J.S., Fixed point approaches to the solution of integral inclusions, Topol. Meth. Nonlinear Anal., 25, pp. 297-311, 2005, https://doi.org/10.12775/tmna.2005.015 DOI: https://doi.org/10.12775/TMNA.2005.015
Dugundji J. and Granas, A., Fixed point theory, Springer-Verlag, Berlin, 2003,https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8
Hu, S. and Papageorgiou, N.S., Handbook of multivalued analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and 1999. DOI: https://doi.org/10.1007/978-1-4615-6359-4
Petruşel, A., Operatorial inclusions, House of the Book of Science, 2002.
Rus, I.A., Generalized contractions, Cluj University Press, Cluj-Napoca, 2001.
Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58, pp. 191-219, 2003.
Rus, I.A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52, pp. 1947-1959, 2003, https://doi.org/10.1016/s0362-546x(02)00288-2 DOI: https://doi.org/10.1016/S0362-546X(02)00288-2
Rybinski, L., On Carathédory type selections, Fund. Math., 125, pp. 187-193, 1985, https://doi.org/10.4064/fm-125-3-187-193 DOI: https://doi.org/10.4064/fm-125-3-187-193
Wegrzyk, R., Fixed point theorems for multifunctions and their applications to functional equations, Disscus. Math., 201, 1982.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.