The equivalence between the Krasnoselskij, Mann and Ishikawa iterations


  • B. E. Rhoades Indiana University, United States
  • Ştefan M. Şoltuz Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy


Krasnoselskij, Mann and Ishikawa iterations, strongly pseudocontractive map


We shall prove that Krasnoselskij iteration converges if and only if Mann-Ishikawa iteration converges, for certain classes of strongly pseudocontractive mappings.


Download data is not yet available.


Berinde,V.,Berinde, M.,The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpatian J. Math., 21, pp. 13-20, 2005.

Chang, S.S., Cho, Y.J., Lee, B.S., Jung, J.S., Kang, S. M., Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl., 224, pp. 149-165, 1998,

Deimling,K., Nonlinear Functional Analysis, Springer-Verlag, 1985,

Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147-150, 1974,

Krasnoselskij, M.A., Two remarks on the method of succesive approximations, Uspehi Mat. Nauk., 10, pp. 123-127, 1955.

Mann, W.E., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953,

Park, J.A., Mann-iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, J. Korean Math. Soc., 31, pp. 333-337, 1994.

Rhoades, B.E., Şoltuz, Ştefan M., On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003, pp. 451-459, 2003,

Rhoades, B.E., Şoltuz, Ştefan M., The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci., 2003, pp. 2645-2652, 2003,

Weng, X., Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 113, pp. 727-731, 1991,




How to Cite

Rhoades, B. E., & Şoltuz, Ştefan M. (2006). The equivalence between the Krasnoselskij, Mann and Ishikawa iterations. Rev. Anal. Numér. Théor. Approx., 35(2), 199–205. Retrieved from