Generation of non-uniform low-discrepancy sequences in the multidimensional case

Authors

  • Natalia Roşca “Babes-Bolyai” University, Romania

DOI:

https://doi.org/10.33993/jnaat352-847

Keywords:

discrepancy, uniformly distributed sequences, \(G\)-discrepancy, \(G\)-distributed sequences, low-discrepancy sequences, quasi-Monte Carlo integration, interpolation
Abstract views: 241

Abstract

In this paper we extend the results we obtained in an earlier paper, from the one-dimensional case to the \(s\)-dimensional case. We propose two inversion type methods for generating \(G\)-distributed low-discrepancy sequences in \([0,1]^{s}\), where \(G\) is an arbitrary distribution function. Our methods are based on the approximation of the inverses of the marginal distribution functions using linear Lagrange interpolation or cubic Hermite interpolation. We also determine upper bounds for the \(G\)-discrepancy of the sequences we generate using the proposed methods.

Downloads

Download data is not yet available.

References

Chelson, P., Quasi-Random Techniques for Monte Carlo Methods, Ph.D Dissertation, The Claremont Graduate School, 1976.

Coman, Gh., Numerical Analysis, Ed. Libris, Cluj-Napoca, 1995 (in Romanian).

Deak, I., Random Number Generators and Simulation, Akademiai Kiado, Budapest, 1990.

Faure, H., Discrépances de suites associées à un système de numération (en dimension un), Bull. Soc. Math. France, 109 (1981), 143-182,https://doi.org/10.24033/bsmf.1935 DOI: https://doi.org/10.24033/bsmf.1935

Faure, H., Discrépances de suites associées à un système de numération (en dimension s), Acta Arith., 41 (1982), 337-351,https://doi.org/10.4064/aa-41-4-337-351 DOI: https://doi.org/10.4064/aa-41-4-337-351

Halton, J.H., On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math., 2 (1960), 84-90,https://doi.org/10.1007/bf01386213 DOI: https://doi.org/10.1007/BF01386213

Hartinger, J. and Kainhofer, R., Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands, Proceedings of Monte Carlo and Quasi-Monte Carlo Methods 2004, H. Niederreiter, eds., Springer-Verlag, Berlin, 2006, 163-180, https://doi.org/10.1007/3-540-31186-6_11 DOI: https://doi.org/10.1007/3-540-31186-6_11

Hlawka, E., Gleichverteilung und Simulation, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 206 (1997), 183-216.

Hlawka, E. and Mück, R., Über Eine Transformation von gleichverteilten Folgen, II, Computing, 9 (1972), 127-138, https://doi.org/10.1007/bf02236962 DOI: https://doi.org/10.1007/BF02236962

Niederreiter, H., Random number generation and Quasi-Monte Carlo methods, Society for Industrial and Applied Mathematics, Philadelphia, 1992, https://doi.org/10.1137/1.9781611970081 DOI: https://doi.org/10.1137/1.9781611970081

Okten, G., Error Reduction Techniques in Quasi-Monte Carlo Integration, Math. Comput. Modelling, Vol. 30, Nos. 7-8 (1999), 61-69, https://doi.org/10.1016/s0895-7177(99)00164-8 DOI: https://doi.org/10.1016/S0895-7177(99)00164-8

Owen, A.B., Multidimensional variation for Quasi-Monte Carlo, Technical report, Standford University, 2004. DOI: https://doi.org/10.1142/9789812567765_0004

Roşca, N., Generation of Non-Uniform Low-Discrepancy Sequences in Quasi-Monte Carlo Integration (in dimension one), Stud. Univ. Babeş-Bolyai Math., Vol. L, no. 2 (2005), 77-90.

Stancu, D.D., Coman, Gh., Agratini, O. and Trîmbiţaş, R., Numerical Analysis and Approximation Theory, Vol. I, Presa Universitara Clujeana, Cluj-Napoca, 2001 (in Romanian).

Downloads

Published

2006-08-01

How to Cite

Roşca, N. (2006). Generation of non-uniform low-discrepancy sequences in the multidimensional case. Rev. Anal. Numér. Théor. Approx., 35(2), 207–219. https://doi.org/10.33993/jnaat352-847

Issue

Section

Articles