Generation of non-uniform low-discrepancy sequences in the multidimensional case
DOI:
https://doi.org/10.33993/jnaat352-847Keywords:
discrepancy, uniformly distributed sequences, \(G\)-discrepancy, \(G\)-distributed sequences, low-discrepancy sequences, quasi-Monte Carlo integration, interpolationAbstract
In this paper we extend the results we obtained in an earlier paper, from the one-dimensional case to the \(s\)-dimensional case. We propose two inversion type methods for generating \(G\)-distributed low-discrepancy sequences in \([0,1]^{s}\), where \(G\) is an arbitrary distribution function. Our methods are based on the approximation of the inverses of the marginal distribution functions using linear Lagrange interpolation or cubic Hermite interpolation. We also determine upper bounds for the \(G\)-discrepancy of the sequences we generate using the proposed methods.Downloads
References
Chelson, P., Quasi-Random Techniques for Monte Carlo Methods, Ph.D Dissertation, The Claremont Graduate School, 1976.
Coman, Gh., Numerical Analysis, Ed. Libris, Cluj-Napoca, 1995 (in Romanian).
Deak, I., Random Number Generators and Simulation, Akademiai Kiado, Budapest, 1990.
Faure, H., Discrépances de suites associées à un système de numération (en dimension un), Bull. Soc. Math. France, 109 (1981), 143-182,https://doi.org/10.24033/bsmf.1935 DOI: https://doi.org/10.24033/bsmf.1935
Faure, H., Discrépances de suites associées à un système de numération (en dimension s), Acta Arith., 41 (1982), 337-351,https://doi.org/10.4064/aa-41-4-337-351 DOI: https://doi.org/10.4064/aa-41-4-337-351
Halton, J.H., On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math., 2 (1960), 84-90,https://doi.org/10.1007/bf01386213 DOI: https://doi.org/10.1007/BF01386213
Hartinger, J. and Kainhofer, R., Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands, Proceedings of Monte Carlo and Quasi-Monte Carlo Methods 2004, H. Niederreiter, eds., Springer-Verlag, Berlin, 2006, 163-180, https://doi.org/10.1007/3-540-31186-6_11 DOI: https://doi.org/10.1007/3-540-31186-6_11
Hlawka, E., Gleichverteilung und Simulation, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 206 (1997), 183-216.
Hlawka, E. and Mück, R., Über Eine Transformation von gleichverteilten Folgen, II, Computing, 9 (1972), 127-138, https://doi.org/10.1007/bf02236962 DOI: https://doi.org/10.1007/BF02236962
Niederreiter, H., Random number generation and Quasi-Monte Carlo methods, Society for Industrial and Applied Mathematics, Philadelphia, 1992, https://doi.org/10.1137/1.9781611970081 DOI: https://doi.org/10.1137/1.9781611970081
Okten, G., Error Reduction Techniques in Quasi-Monte Carlo Integration, Math. Comput. Modelling, Vol. 30, Nos. 7-8 (1999), 61-69, https://doi.org/10.1016/s0895-7177(99)00164-8 DOI: https://doi.org/10.1016/S0895-7177(99)00164-8
Owen, A.B., Multidimensional variation for Quasi-Monte Carlo, Technical report, Standford University, 2004. DOI: https://doi.org/10.1142/9789812567765_0004
Roşca, N., Generation of Non-Uniform Low-Discrepancy Sequences in Quasi-Monte Carlo Integration (in dimension one), Stud. Univ. Babeş-Bolyai Math., Vol. L, no. 2 (2005), 77-90.
Stancu, D.D., Coman, Gh., Agratini, O. and Trîmbiţaş, R., Numerical Analysis and Approximation Theory, Vol. I, Presa Universitara Clujeana, Cluj-Napoca, 2001 (in Romanian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.