Continuous selections of Borel measures, positive operators and degenerate evolution problems
DOI:
https://doi.org/10.33993/jnaat361-852Keywords:
degenerate differential operator, diffusion equation, Markov semigroup, Borel measure, positive approximation process, asymptotic formulaAbstract
In this paper we continue the study of a sequence of positive linear operators which we have introduced in [9] and which are associated with a continuous selection of Borel measures on the unit interval. We show that the iterates of these operators converge to a Markov semigroup whose generator is a degenerate second-order elliptic differential operator on the unit interval. Some qualitative properties of the semigroup, or equivalently, of the solutions of the corresponding degenerate evolution problems, are also investigated.Downloads
References
Altomare, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Pisa, Cl. Sci., 16 (4), no. 2, pp. 259-279, 1989.
Altomare, F., Lototsky-Schnabl operators on the unit interval, C. R. Acad. Sci. Paris, 313, Série I, pp. 371-375, 1991.
Altomare, F., Lototsky-Schnabl operators on compact convex sets and their associated limit semigroups, Mh. Math., 114, pp. 1-13, 1992, https://doi.org/10.1007/bf01572077 DOI: https://doi.org/10.1007/BF01572077
Altomare, F., Lototsky-Schnabl operators on the unit interval and degenerate diffusion equations, In: Progress Functional Analysis (Eds: K. D. Bierstedt, J. Bonet, L. Horváth and M. Maestre), North Holland Math. Studies, 170, pp. 259-277, 1992, https://doi.org/10.1016/s0304-0208(08)70325-6 DOI: https://doi.org/10.1016/S0304-0208(08)70325-6
Altomare, F. and Amiar, R., Asymptotic formulae for positive linear operators, Math. Balkanica, New Series, 16, pp. 283-304, 2002.
Altomare, F. and Attalienti, A., Forward diffusion equations and positive operators, Math. Z., 225, pp. 211-229, 1997, https://doi.org/10.1007/pl00004306 DOI: https://doi.org/10.1007/PL00004306
Altomare, F. and Campiti, M., Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994, https://doi.org/10.1515/9783110884586 DOI: https://doi.org/10.1515/9783110884586
Altomare, F. and Carbone, I., On some degenerate differential operators on weighted function spaces, J. Math Anal. Appl., 213, pp. 308-333, 1997, https://doi.org/10.1006/jmaa.1997.5540 DOI: https://doi.org/10.1006/jmaa.1997.5540
Altomare, F. and Leonessa, V., On a sequence of positive linear operators associated with a continuous selection of Borel measures, Mediterr. J. Math., 3., nos. 3-4, pp. 363-382, 2006, https://doi.org/10.1007/s00009-006-0084-8 DOI: https://doi.org/10.1007/s00009-006-0084-8
Altomare, F., Leonessa, V. and Raşa, I., On Bernstein-Schnabl operators on the unit interval, to appear in Z. Anal. Anwendungen, 27, no. 3, 2008. DOI: https://doi.org/10.4171/ZAA/1360
Altomare, F. and Mangino, E. M., On a class of elliptic-parabolic equations on unbounded interval, Positivity, 5, pp. 239-257, 2000. DOI: https://doi.org/10.1023/A:1011450903149
Attalienti, A., Generalized Bernstein-Durrmeyer Operators and the associated limit semigroup, J. Approx. Theory, 99, pp. 289-309, 1999, https://doi.org/10.1006/jath.1999.3329 DOI: https://doi.org/10.1006/jath.1999.3329
Attalienti, A. and Campiti, M., Degenerate evolution problems and Beta-type operators, Studia Math., 140 (2), pp. 117-139, 2000.
Bardaro, C., Butzer, P. L., Stens, R. L. and Vinti, G., Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis, 23, pp. 299-340, 2003, https://doi.org/10.1524/anly.2003.23.4.299 DOI: https://doi.org/10.1524/anly.2003.23.4.299
Bauer, H., Probability Theory, De Gruyter Studies in Mathematics 23, Walter de Gruyter, Berlin-New York, 1996.
Belleni-Morante, A., Applied Semigroups and Evolution Equations, The Clarendan Press, Oxford University Press, New York, 1979.
Bernstein, S. N., Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilités, Comm. Soc. Math. Kharkow, 13 (2), pp. 1-2, 1912-1913.
Campiti, M. and Metafune, G., Evolution equations associated with recursively de-fined Bernstein-type operators, J. Approx. Theory, 87, no. 3, pp. 270-290, 1996, https://doi.org/10.1006/jath.1996.0105 DOI: https://doi.org/10.1006/jath.1996.0105
Campiti, M., Metafune, G. and Pallara, D., Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57, pp. 1-36, 1998, https://doi.org/10.1007/pl00005959 DOI: https://doi.org/10.1007/PL00005959
Engel, K.-J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer, New York-Berlin, 1999.
Kantorovich, L. V., Sur certains d´eveloppements suivant les polynˆomes de la forme de S. Bernstein, I, II, C. R. Acad. URSS, pp. 563-568, pp. 595-600, 1930.
Mamedov, R. G., On the order of the approximation of differentiable functions by linear positive operators (In Russian), Doklady SSSR, 146, pp. 1013-1016, 1962.
Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1
Voronovskaja, E. V., The asymptotic properties of the approximation of functions with Bernstein polynomials, Dokl. Akad. Nauk SSSR, A, pp. 79-85, 1932.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.