Weaker conditions for the convergence of Newton-like methods
DOI:
https://doi.org/10.33993/jnaat361-854Keywords:
Banach Space, Newton-like method, majorizing sequence, Fréchet-derivative, semilocal convergence analysisAbstract
We provide a semilocal convergence analysis for a certain class of Newton-like methods for the solution of a nonlinear equation containing a non differentiable term. Our approach provides: weaker sufficient conditions; finer error bounds on the distances involved; a more precise information on the location of the solution than before, and under the same computational cost.Downloads
References
Argyros, I. K., On a new Newton-Mysovskii-type theorem with applications to inexact Newton-like methods and their discretizations, IMA J. Numer. Anal., 18, pp. 37-56, 1997, https://doi.org/10.1093/imanum/18.1.37 DOI: https://doi.org/10.1093/imanum/18.1.37
Argyros, I. K., Advances in the efficiency of computational methods and applications, World Scientific Publ. Co, NJ River Edye, 2000, https://doi.org/10.1142/4448 DOI: https://doi.org/10.1142/4448
Argyros, I. K., An improved convergence analysis and applications for Newton-like methods in Banach space, Numer. Funct. Anal. and Optimiz., 24, nos. 7-8, pp. 653-672, 2003, https://doi.org/10.1081/nfa-120026364 DOI: https://doi.org/10.1081/NFA-120026364
Argyros, I. K. and Szidarovszky, F., The theory and application of iteration methods, C.R.C. Press, Boca Raton, Florida, 1993.
Chen, X. and Yamamoto, T., Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. and Optimiz., 10, nos. 1-2, pp. 37-48, 1989, https://doi.org/10.1080/01630568908816289 DOI: https://doi.org/10.1080/01630568908816289
Dennis, J. E., Toward a unified convergence theory for Newton-like methods, in: Rall, L.B., ed., Nonlinear Functional Analysis and Applications, Academic Press, New York, pp. 425-472, 1971, https://doi.org/10.1016/b978-0-12-576350-9.50010-2 DOI: https://doi.org/10.1016/B978-0-12-576350-9.50010-2
Deuflhard, P. and Heindl, G., Affine invariant convergence theorems for Newton's method and extensions to related method, SIAM J. Numer. Anal., 16, pp. 1-10, 1979, https://doi.org/10.1137/0716001 DOI: https://doi.org/10.1137/0716001
Ezquerro, J. A. and Hernandez, M. A., Multipoint super-Halley type approximation algorithms in Banach spaces, Numer. Anal. Optim., 21, nos. 7-8, pp. 845-858, 2000, https://doi.org/10.1080/01630560008816989 DOI: https://doi.org/10.1080/01630560008816989
Gutierrez, J. M., A new semilocal convergence theorem for newton's method, J. Comput. Appl. Math., 79, pp. 131-145, 1997, https://doi.org/10.1016/s0377-0427(97)81611-1 DOI: https://doi.org/10.1016/S0377-0427(97)81611-1
Gutierrez, J. M. and Hernandez, M. A., Newton's method under weak Kantorovich conditions, IMA Journal of Numer. Anal., 20, pp. 521-532, 2000, https://doi.org/10.1093/imanum/20.4.521 DOI: https://doi.org/10.1093/imanum/20.4.521
Hernandez, M. A., Relaxing convergence conditions for Newton's method, J. Math. Anal. Appl., 249, pp. 463-475, 2000, https://doi.org/10.1006/jmaa.2000.6900 DOI: https://doi.org/10.1006/jmaa.2000.6900
Huang, Z., A note on the Kantorovich theorem for Newton iteration, J. Comput. Appl. Math., 47, pp. 211-217, 1993, https://doi.org/10.1016/0377-0427(93)90004-u DOI: https://doi.org/10.1016/0377-0427(93)90004-U
Huang, Z., Newton method under weak Lipschitz continuous derivative in Banach spaces, Appl. Math. Comput., 140, pp. 115-126, 2003, https://doi.org/10.1016/s0096-3003(02)00215-1 DOI: https://doi.org/10.1016/S0096-3003(02)00215-1
Kantorovich, L. V. and Akilov, G. P., Functional Analysis, Pergamon Press, Oxford, 1982.
Potra, F. A., On the convergence of a class of Newton-like methods, in Ansarge, R., Toening, W. eds., Iterative solution of nonlinear systems of equations. Lecture Notes in Math. Berlin, Heidelberg, Springer, New York, 953, pp. 125-137, 1983, https://doi.org/10.1007/bfb0069378 DOI: https://doi.org/10.1007/BFb0069378
Rheinboldt, W. C., A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5, pp. 42-63, 1968, https://doi.org/10.1137/0705003 DOI: https://doi.org/10.1137/0705003
Yamamoto, T., A convergence theorem for Newton-like methods in Banach space, Numer. Math., 51, pp. 545-557, 1987, https://doi.org/10.1007/bf01400355 DOI: https://doi.org/10.1007/BF01400355
Zabrejko, P. P. and Ngven, D. F., The majorant method in the theory of Newton approximations and the Ptak error estimates, Numer. Funct. Anal. and Optimiz., 9, pp. 671-684, 1987, https://doi.org/10.1080/01630568708816254 DOI: https://doi.org/10.1080/01630568708816254
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.