Application des méthodes d'optimisation pour la résolution du problème d'inégalités variationnelles
Application of optimization methods for solving the problem of variational inequalities
DOI:
https://doi.org/10.33993/jnaat361-859Keywords:
problème d'inégalités variationnelles, fonctions de mérite, optimisation sans contraintes, méthode de premier ordre, méthode de second ordreAbstract
In French.
Le problème d'inégalités variationnelles, lancé au milieu des années soixantes par Hartman et Stampacchia dans le cadre du calcul des variations, et celui des problèmes aux limites des équations aux dérivées partielles, prend depuis quelques années une importance grandissante dans l'étude théorique et le traitement numérique de plusieurs types de problèmes pratiques et scientifiques d'intérêt capital.
Les techniques d'optimisation constituent un bon stimulant conduisant à une méthodologie riche et pleine d'expériences. A ce propos, ce problème est converti en un problème d'optimisation équivalent, avec ou sans contraintes, ayant les propriétés requises pour un traitement convenable.
Notre travail se rattache à des méthodes d'optimisation sans contraintes. Nous avons pu mettre en oeuvre plusieurs versions de ces algorithmes présentées dans un cadre comparatif signifiant, à travers des problèmes mathématiques importants.
In English.
The problem of variational inequalities, launched in the mid-sixties by Hartman and Stampacchia in the context of the calculus of variations, and that of problems at the limits of partial differential equations, has become increasingly important in recent years in the theoretical study and numerical treatment of several types of practical and scientific problems of capital interest.
Optimization techniques are a good stimulus leading to a rich and experienced methodology. In this regard, this problem is converted into an equivalent optimization problem, with or without constraints, having the properties required for a suitable treatment.
Our work is related to optimization methods without constraints. We were able to implement several versions of these algorithms presented in a meaningful comparative framework, through important mathematical problems.
Downloads
References
Bingheng, H. E., A class of Projection and Contraction Method for Monotone Vari-ational inequalities, Applied Mathematics Optimization,35, pp. 69-79, 1997, https://doi.org/10.1007/bf02683320 DOI: https://doi.org/10.1007/s002459900037
Bnouhachem, A., Self-adaptive method for solving general mixed variational inequali-ties, Journal Mathematical Analyssis and Applications,309, pp. 136-150, 2005, https://doi.org/10.1016/j.jmaa.2004.12.023 DOI: https://doi.org/10.1016/j.jmaa.2004.12.023
Fukushima, M., Equivalent differentiable optimization problems and descent methodsfor symmetric variational inequality problems, Mathematical Programming, 53, pp. 99-110, 1992, https://doi.org/10.1007/bf01585696 DOI: https://doi.org/10.1007/BF01585696
Fukushima, M., Merit functions for variational inequality and complementarity prob-lems, Nonlinear Optimization and applications, Edited bay G. Di pillo and F. Gianness, Plenum publishing Corporation, New York, pp. 155-170, 1996, https://doi.org/10.1007/978-1-4899-0289-4_11 DOI: https://doi.org/10.1007/978-1-4899-0289-4_11
Peng, J. M., Equivalence of variational inequality problems to unconstrained minimization, Mathematical Programming, 78, pp. 347-355, 1997, https://doi.org/10.1007/bf02614360 DOI: https://doi.org/10.1007/BF02614360
Peng, J. M.and Fukushima, M., A hyprid Newton method for solving the variational inequality problem via the D-gap function, Mathematical Programming, 2, pp. 367-386,1999, https://doi.org/10.1007/s101070050094 DOI: https://doi.org/10.1007/s101070050094
Yamashita, N., Taji, K. and Fukushima, M., Unconstrained optimization reformulations of Variational inequality problems, Journal of Optimization Theory and Applications, 92, pp. 439-456, 1997, https://doi.org/10.1023/a:1022660704427 DOI: https://doi.org/10.1023/A:1022660704427
Zhang, J. Z.and Xiu, N. H, Local convergence behavior of some Projection-type methods for affine variational inequalities,Journal of Optimization Theory and Applications,108, no. 1, pp. 205-216, 2001, https://doi.org/10.1023/a:1026474207884 DOI: https://doi.org/10.1023/A:1026474207884
Radjeai, S., Resolution du probleme d'inegalites variationnel les dansRnpar des techniques d'optimisation sans contraintes, These de Magistter, Universite Ferhat Abbas,Setif, Algerie, 2002.
He, Y., A new double projection algorithm for variational inequalities, Journal of Com-putational and Applied Mathematics,185, pp. 166-173, 2006, https://doi.org/10.1016/j.cam.2005.01.031 DOI: https://doi.org/10.1016/j.cam.2005.01.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.