Remarks on interpolation in certain linear spaces (IV)

Authors

  • Adrian Diaconu Babeş-Bolyai University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat362-863

Keywords:

abstract interpolation polynomial, nonlinear mappings between linear normed spaces
Abstract views: 227

Abstract

In the papers [5], [6], [7] we shall study a way of extending the model of interpolating the real functions, with simple nodes, to the case of the functions defined between linear spaces, especially between linear normed spaces. In order to keep as many characteristics as possible from the case of the interpolation of real functions, in this paper we present a model of construction of the abstract interpolation polynomials and the divided differences based on the properties of multilinear mappings. The aim of the present paper is the study of the conduct of the abstract interpolation polynomial, in the case when the function for interpolation is a abstract polynomial. In the last part we will construct the abstract interpolation polynomial and the divided differences, in the case in which the spaces \(X\) and \(Y\) have finite dimensions.

Downloads

Download data is not yet available.

References

Argyros, I. K., Polynomial Operator Equation in Abstract Spaces and Applications, CRC Press Boca Raton Boston London New York Washington D.C., 1998.

Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (I), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 4, pp. 1-52, 1981.

Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (II), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 1, pp. 41-97, 1984.

Diaconu, A., Interpolation dans les espaces abstraits. Méthodes itératives pour la resolution des équation opérationnelles obtenues par l'interpolation inverse (III), "Babeş-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar of Functional Analysis and Numerical Methods, 1, pp. 21-71, 1985.

Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (I), Studii în metode de analiză numerică şi optimizare, Chişinău: USM-UCCM., 2, 2(1), pp. 3-14, 2000.

Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (II), Studii în metode de analiză numerică şi optimizare, Chişinău: USM-UCCM., 2, 2(4), pp. 143-161, 2000.

Diaconu, A., Remarks on Interpolation in Certain Linear Spaces (III). (under printing).

Makarov, V. L., and Hlobistov, V. V., Osnovî teorii polinomialnogo operatornogo interpolirovania, Institut Mathematiki H.A.H. Ukrain, Kiev, 1998 (in Russian).

Păvăloiu, I., Interpolation dans des espaces linéaire normés et application, Mathematica, Cluj, 12, (35), 1, pp. 149-158, 1970.

Păvăloiu, I., Consideraţii asupra metodelor iterative obţinute prin interpolare inversă, Studii şi cercetări matematice, 23, 10, pp. 1545-1549, 1971 (in Romanian).

Păvăloiu, I., Introducere în teoria aproximării soluţiilor ecuaţiilor, Editura Dacia, Cluj-Napoca, 1976 (in Romanian).

Prenter, P., M., Lagrange and Hermite Interpolation in Banach Spaces, Journal of Approximation Theory 4, pp. 419-432, 1971, https://doi.org/10.1016/0021-9045(71)90007-4. DOI: https://doi.org/10.1016/0021-9045(71)90007-4

Downloads

Published

2007-08-01

How to Cite

Diaconu, A. (2007). Remarks on interpolation in certain linear spaces (IV). Rev. Anal. Numér. Théor. Approx., 36(2), 139–158. https://doi.org/10.33993/jnaat362-863

Issue

Section

Articles