Best uniform approximation of semi-Lipschitz functions by extensions
DOI:
https://doi.org/10.33993/jnaat362-864Keywords:
semi-Lipschitz functions, uniform approximation, extensions of semi-Lipschitz functionsAbstract
In this paper we consider the problem of best uniform approximation of a real valued semi-Lipschitz function \(F\) defined on an asymmetric metric space \((X,d),\) by the elements of the set \(\mathcal{E}_{d}(\left. F\right\vert _{Y})\) of all extensions of \(\left.F\right\vert _{Y}\) \((Y\subset X),\) preserving the smallest semi-Lipschitz constant. It is proved that this problem has always at least a solution, if \((X,d)\) is \((d,\overline{d})\)-sequentially compact, or of finite diameter.Downloads
References
Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27 (3), pp. 275-296, 2004. DOI: https://doi.org/10.2989/16073600409486100
Cobzaş, S., Asymmetric locally convex spaces, Int. J. Math. Math. Sci., 16, pp. 2585-2608, 2005. DOI: https://doi.org/10.1155/IJMMS.2005.2585
Cobzaş, S. and Mustăţa, C., Best approximation in spaces with asymmetric norm,. Rev. Anal. Numér. Thèor. Approx., 33 (1), pp. 17-31, 2006, http://ictp.acad.ro/jnaat/journal/article/view/2006-vol35-no1-art4
Cobzaş, S. and Mustăţa, C., Extension of bounded linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numér. Théor. Approx., 31, 1, pp. 35-50, 2004, http://ictp.acad.ro/jnaat/journal/article/view/2004-vol33-no1-art5
Collins, J. and Zimmer, J., An asymmetric Arzelà-Ascoli theorem, http://bath.ac.uk/math-sci/BICS, Preprint, 16, 12 pp, 2005.
Garcia-Raffi, L. M., Romaguera, S. and Sánchez-Pérez, E. A., The dual space of an asymmetric linear space, Quaest. Math., 26, pp. 83-96, 2003. DOI: https://doi.org/10.2989/16073600309486046
Künzi, H. P. A., Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topologies, in: Handbook of the History of General Topology, ed. by C.E. Aull and R. Lower, 3, Hist. Topol. 3, Kluwer Acad. Publ. Dordrecht, pp. 853-968, 2001. DOI: https://doi.org/10.1007/978-94-017-0470-0_3
McShane, E. T., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837-842, 1934. DOI: https://doi.org/10.1090/S0002-9904-1934-05978-0
Menucci, A., On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
Mustăţa, C., Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Theor. Approx, 30, 1, pp. 61-67, 2001, http://ictp.acad.ro/jnaat/journal/article/view/2001-vol30-no1-art8
Mustăţa, C., On the extremal semi-Lipschitz functions, Rev. Anal. Numér. Theor. Approx, 31, 1, pp. 103-108, 2002, http://ictp.acad.ro/jnaat/journal/article/view/2002-vol31-no1-art11
Mustăţa, C., On the approximation of the global extremum of a semi-Lipschitz function, IJMMS (to appear).
Reilly, I.L., Subrahmanyam, P. V. and Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Mh. Math., 93 , pp. 127-140, 1982. DOI: https://doi.org/10.1007/BF01301400
Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000. DOI: https://doi.org/10.1006/jath.1999.3439
Romaguera, S. and Sanchis, M., Properties of the normed cone of semi-Lipschitz functions, Acta Math. Hungar., 108(1-2), pp. 55-70, 2005. DOI: https://doi.org/10.1007/s10474-005-0208-9
Romaguera, S., Sánchez-Álvarez, J.M. and Sanchis, M., El espacio de funciones semi-Lipschitz, VI Jornadas de Matematica Aplicada, Universiadad Politécnica de Valencia, pp. 1-15, 2005.
Sánchez-Álvarez, J. M., On semi-Lipschitz functions with values in a quasi-normed linear space, Applied General Topology, 6, 2, pp. 216-228, 2005. DOI: https://doi.org/10.4995/agt.2005.1956
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.