Classical results via Mann-Ishikawa iteration


  • Ştefan M. Şoltuz Universidad de los Andes, Colombia, and Tiberiu Popoviciu Institute of Numerical Analysis, Romania
  • Diana Otrocol Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy


delay differential equationș Mann iteration, Ishikawa iteration


New proofs of existence and uniqueness results for the solution of the Cauchy problem with delay are obtained by use of Mann-Ishikawa iteration.


Download data is not yet available.


Coman, Gh., Pavel, G., Rus, I. and Rus, I. A., Introduction in the theory of operatorial equation, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).

Hartman, P., Ordinary differential equations, John Wiley & Sons, Inc., New York, London, Sydney, 1964.

Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147-150, 1974,

Mann, W. R., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953,

Otrocol, D., Data dependence for the solution of a Lotka-Volterra system with two delays, Mathematica, Tome 48 (71), 1, pp. 61-68, 2006.

Rus, I. A., Principles and applications of the fixed point theory, Ed. Dacia, Cluj Napoca, 1979 (in Romanian).

Şoltuz, Ş. M., The equivalence of Picard, Mann and Ishikawa iteration dealing with quasi-contractive operators, Math. Comm. 10, pp. 81-88, 2005.

Şoltuz, Ş. M., An equivalence between the convergence of Ishikawa, Mann and Picard iterations, Math. Comm. 8, pp. 15-22, 2003.




How to Cite

Şoltuz, Ştefan M., & Otrocol, D. (2007). Classical results via Mann-Ishikawa iteration. Rev. Anal. Numér. Théor. Approx., 36(2), 193–197. Retrieved from