Order 1 autoregressive process of finite length
DOI:
https://doi.org/10.33993/jnaat362-869Keywords:
autoregressive process, spectral analysis, time seriesAbstract
The stochastic processes of finite length defined by recurrence relations request additional relations specifying the first terms of the process analogously to the initial conditions for the differential equations. As a general rule, in time series theory one analyzes only stochastic processes of infinite length which need no such initial conditions and their properties are less difficult to be determined. In this paper we compare the properties of the order 1 autoregressive processes of finite and infinite length and we prove that the time series length has an important influence mainly if the serial correlation is significant. These different properties can manifest themselves as transient effects produced when a time series is numerically generated. We show that for an order 1 autoregressive process the transient behavior can be avoided if the first term is a Gaussian random variable with standard deviation equal to that of the theoretical infinite process and not to that of the white noise innovation.Downloads
References
Blender, R., Renormalization group analysis of autoregressive processes and fractional noise, Phys. Rev. E, 64, 067101 (2001), https://doi.org/10.1103/physreve.64.067101 DOI: https://doi.org/10.1103/PhysRevE.64.067101
Brockwell, P.J. and Davis, R., Time Series: Theory and Methods, Springer-Verlag, New York, 1991. DOI: https://doi.org/10.1007/978-1-4419-0320-4
Brockwell, P.J. and Davis, R., Introduction to Time Series and Forecasting, Springer-Verlag, New York, 1996. DOI: https://doi.org/10.1007/978-1-4757-2526-1
Box, G. E. P. and Jenkins, G. M. Time Series Analysis: Forcasting and Control, 2nd ed., Holden-Day, San Francisco, 1976.
Gao, J., Hu, J., Tung, W., Cao, Y., Sarshar, N. and Roychowdhury, V.P., Assessment of long-range correlation in time series: How to avoid pitfalls, Phys. Rev. E, 73, 016117 (2006), https://doi.org/10.1103/physreve.73.016117 DOI: https://doi.org/10.1103/PhysRevE.73.016117
Guzman-Vargas, L. and Angulo-Brown, F., Simple model of the aging effect in heart interbeat time series, Phys. Rev. E, 67, 052901 (2003), https://doi.org/10.1103/physreve.67.052901 DOI: https://doi.org/10.1103/PhysRevE.67.052901
Hallerberg, S., Altmann, E. G., Holstein, D. and Kantz, H., Precursors of extreme increments, Phys. Rev. E, 75, 016706 (2007), https://doi.org/10.1103/physreve.75.016706 DOI: https://doi.org/10.1103/PhysRevE.75.016706
Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994. DOI: https://doi.org/10.1515/9780691218632
Kaulakys, B., Autoregressive model of 1/f noise, Physics Letters A, 257, 37 (1999), https://doi.org/10.1016/s0375-9601(99)00284-4 DOI: https://doi.org/10.1016/S0375-9601(99)00284-4
Király, A. and Jánosi, I. M., Stochastic modeling of daily temperature fluctuations, Phys. Rev. E, 65, 051102 (2002), https://doi.org/10.1103/physreve.65.051102 DOI: https://doi.org/10.1103/PhysRevE.65.051102
Kugiumtzis, D., Statically transformed autoregressive process and surrogate data test for nonlinearity, Phys. Rev. E, 66, 025201 (2002), https://doi.org/10.1103/physreve.66.025201 DOI: https://doi.org/10.1103/PhysRevE.66.025201
Liley, D. T., Cadusch, P. J., Gray, M. and Nathan, P. J., Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity, Phys. Rev. E, 68, 051906 (2003), https://doi.org/10.1103/physreve.68.051906 DOI: https://doi.org/10.1103/PhysRevE.68.051906
Maraun, D., Rust, H.W. and Timmer, J., Tempting long-memory - on the interpretation of DFA results, Nonlinear Processes in Geophysics, 11, 495-503 (2004), https://doi.org/10.5194/npg-11-495-2004 DOI: https://doi.org/10.5194/npg-11-495-2004
Morariu, V.V. and Coza, A. , Nonlinear properties of the atomic vibrations in protein backbones, Physica A, 320, 449 (2003), https://doi.org/10.1016/s0378-4371(02)01661-8 DOI: https://doi.org/10.1016/S0378-4371(02)01649-7
Palus, M. and Novotna, D., Sunspot Cycle: A Driven Nonlinear Oscillator? Phys. Rev. Lett., 83, 3406 (1999), https://doi.org/10.1103/physrevlett.83.3406 DOI: https://doi.org/10.1103/PhysRevLett.83.3406
Stoica, P. and Moses, R. L., Introduction to Spectral Analysis, Prentice-Hall, New Jersey, 1997.
Timmer, J., Schwarz, U., Voss, H.U., Wardinski, I., Belloni, T., Hasinger, G., van der Klis, M and Kurths, J., Linear and nonlinear time series analysis of the black hole candidate Cygnus X-1, Phys. Rev. E, 61, 1342 (2000), https://doi.org/10.1103/physreve.61.1342 DOI: https://doi.org/10.1103/PhysRevE.61.1342
Vamoş, C., Automatic algorithm for monotone trend removal, Phys. Rev. E, 75, 036705 (2007), https://doi.org/10.1103/physreve.75.036705 DOI: https://doi.org/10.1103/PhysRevE.75.036705
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.