Order 1 autoregressive process of finite length

Authors

  • Călin Vamoş Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
  • Ştefan M. Şoltuz Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania
  • Maria Crăciun Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat362-869

Keywords:

autoregressive process, spectral analysis, time series
Abstract views: 289

Abstract

The stochastic processes of finite length defined by recurrence relations request additional relations specifying the first terms of the process analogously to the initial conditions for the differential equations. As a general rule, in time series theory one analyzes only stochastic processes of infinite length which need no such initial conditions and their properties are less difficult to be determined. In this paper we compare the properties of the order 1 autoregressive processes of finite and infinite length and we prove that the time series length has an important influence mainly if the serial correlation is significant. These different properties can manifest themselves as transient effects produced when a time series is numerically generated. We show that for an order 1 autoregressive process the transient behavior can be avoided if the first term is a Gaussian random variable with standard deviation equal to that of the theoretical infinite process and not to that of the white noise innovation.

Downloads

Download data is not yet available.

References

Blender, R., Renormalization group analysis of autoregressive processes and fractional noise, Phys. Rev. E, 64, 067101 (2001), https://doi.org/10.1103/physreve.64.067101 DOI: https://doi.org/10.1103/PhysRevE.64.067101

Brockwell, P.J. and Davis, R., Time Series: Theory and Methods, Springer-Verlag, New York, 1991. DOI: https://doi.org/10.1007/978-1-4419-0320-4

Brockwell, P.J. and Davis, R., Introduction to Time Series and Forecasting, Springer-Verlag, New York, 1996. DOI: https://doi.org/10.1007/978-1-4757-2526-1

Box, G. E. P. and Jenkins, G. M. Time Series Analysis: Forcasting and Control, 2nd ed., Holden-Day, San Francisco, 1976.

Gao, J., Hu, J., Tung, W., Cao, Y., Sarshar, N. and Roychowdhury, V.P., Assessment of long-range correlation in time series: How to avoid pitfalls, Phys. Rev. E, 73, 016117 (2006), https://doi.org/10.1103/physreve.73.016117 DOI: https://doi.org/10.1103/PhysRevE.73.016117

Guzman-Vargas, L. and Angulo-Brown, F., Simple model of the aging effect in heart interbeat time series, Phys. Rev. E, 67, 052901 (2003), https://doi.org/10.1103/physreve.67.052901 DOI: https://doi.org/10.1103/PhysRevE.67.052901

Hallerberg, S., Altmann, E. G., Holstein, D. and Kantz, H., Precursors of extreme increments, Phys. Rev. E, 75, 016706 (2007), https://doi.org/10.1103/physreve.75.016706 DOI: https://doi.org/10.1103/PhysRevE.75.016706

Hamilton, J.D., Time Series Analysis, Princeton University Press, 1994. DOI: https://doi.org/10.1515/9780691218632

Kaulakys, B., Autoregressive model of 1/f noise, Physics Letters A, 257, 37 (1999), https://doi.org/10.1016/s0375-9601(99)00284-4 DOI: https://doi.org/10.1016/S0375-9601(99)00284-4

Király, A. and Jánosi, I. M., Stochastic modeling of daily temperature fluctuations, Phys. Rev. E, 65, 051102 (2002), https://doi.org/10.1103/physreve.65.051102 DOI: https://doi.org/10.1103/PhysRevE.65.051102

Kugiumtzis, D., Statically transformed autoregressive process and surrogate data test for nonlinearity, Phys. Rev. E, 66, 025201 (2002), https://doi.org/10.1103/physreve.66.025201 DOI: https://doi.org/10.1103/PhysRevE.66.025201

Liley, D. T., Cadusch, P. J., Gray, M. and Nathan, P. J., Drug-induced modification of the system properties associated with spontaneous human electroencephalographic activity, Phys. Rev. E, 68, 051906 (2003), https://doi.org/10.1103/physreve.68.051906 DOI: https://doi.org/10.1103/PhysRevE.68.051906

Maraun, D., Rust, H.W. and Timmer, J., Tempting long-memory - on the interpretation of DFA results, Nonlinear Processes in Geophysics, 11, 495-503 (2004), https://doi.org/10.5194/npg-11-495-2004 DOI: https://doi.org/10.5194/npg-11-495-2004

Morariu, V.V. and Coza, A. , Nonlinear properties of the atomic vibrations in protein backbones, Physica A, 320, 449 (2003), https://doi.org/10.1016/s0378-4371(02)01661-8 DOI: https://doi.org/10.1016/S0378-4371(02)01649-7

Palus, M. and Novotna, D., Sunspot Cycle: A Driven Nonlinear Oscillator? Phys. Rev. Lett., 83, 3406 (1999), https://doi.org/10.1103/physrevlett.83.3406 DOI: https://doi.org/10.1103/PhysRevLett.83.3406

Stoica, P. and Moses, R. L., Introduction to Spectral Analysis, Prentice-Hall, New Jersey, 1997.

Timmer, J., Schwarz, U., Voss, H.U., Wardinski, I., Belloni, T., Hasinger, G., van der Klis, M and Kurths, J., Linear and nonlinear time series analysis of the black hole candidate Cygnus X-1, Phys. Rev. E, 61, 1342 (2000), https://doi.org/10.1103/physreve.61.1342 DOI: https://doi.org/10.1103/PhysRevE.61.1342

Vamoş, C., Automatic algorithm for monotone trend removal, Phys. Rev. E, 75, 036705 (2007), https://doi.org/10.1103/physreve.75.036705 DOI: https://doi.org/10.1103/PhysRevE.75.036705

Downloads

Published

2007-08-01

How to Cite

Vamoş, C., Şoltuz, Ştefan M., & Crăciun, M. (2007). Order 1 autoregressive process of finite length. Rev. Anal. Numér. Théor. Approx., 36(2), 199–214. https://doi.org/10.33993/jnaat362-869

Issue

Section

Articles