Solving equations using Newton's method under weak conditions on Banach spaces with a convergence structure

Authors

  • Ioannis K. Argyros Cameron University, USA

DOI:

https://doi.org/10.33993/jnaat371-871

Keywords:

Newton's method, Banach spaces with a convergence structure, semilocal convergence, Fréchet-derivative, majorant principle, fixed point, Newton-Kantorovich theorem/hypothesis
Abstract views: 220

Abstract

We provide new semilocal results for Newton's method on Banach spaces with a convergence structure. Using more precise majorizing sequence we show that, under weaker convergence conditions than before, we can obtain finer error bounds on the distances involved and a more precise information on the location of the solution.

Downloads

Download data is not yet available.

References

Argyros, I. K., Newton methods on Banach spaces with on convergence structure and applications, computers and Mathematics with Applications, 40, 1, pp. 37-48, 2000, https://doi.org/10.1016/s0898-1221(00)00138-3 DOI: https://doi.org/10.1016/S0898-1221(00)00138-3

Argyros, I. K., Advances in the efficiency of computational methods and applications, World Scientific Publ. Co. River Edge, New Jersey, 2000, https://doi.org/10.1142/4448 DOI: https://doi.org/10.1142/4448

Argyros, I. K., An improved error analysis for Newton-like methods under generalized conditions, J. Comput. Appl. Math. 157, 1, pp. 169-185, 2003, https://doi.org/10.1016/s0377-0427(03)00390-x DOI: https://doi.org/10.1016/S0377-0427(03)00390-X

Kantorovich, L. V., and Akilov, G. P., Functional Analysis in normed spaces, Pergamon Press, Oxford, 1982. DOI: https://doi.org/10.1016/B978-0-08-023036-8.50010-2

Meyer, P. W., Newton's method in generalized Banach spaces, Numer. Funct. Anal. and Optimiz. 9, pp. 249-259, 1987, https://doi.org/10.1080/01630568708816234 DOI: https://doi.org/10.1080/01630568708816234

Meyer, P. W., A unifying theorem on Newton's method, Numer. Funct. Anal. and Optimiz., 13, (5 and 6), pp. 463-473, 1992, https://doi.org/10.1080/01630569208816492 DOI: https://doi.org/10.1080/01630569208816492

Vandergraft, J. A., Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4, pp. 406-432, 1967, https://doi.org/10.1137/0704037 DOI: https://doi.org/10.1137/0704037

Yamamoto, J., A unified derivation of several error bounds for Newton's process, J. Comput. Appl. Math. 12 and 13, pp. 179-191, 1985, https://doi.org/10.1016/0377-0427(85)90015-9 DOI: https://doi.org/10.1016/0377-0427(85)90015-9

Downloads

Published

2008-02-01

How to Cite

Argyros, I. K. (2008). Solving equations using Newton’s method under weak conditions on Banach spaces with a convergence structure. Rev. Anal. Numér. Théor. Approx., 37(1), 17–26. https://doi.org/10.33993/jnaat371-871

Issue

Section

Articles